1,948 research outputs found

    Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    Get PDF
    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g

    Hydrostatic Pressure and Temperature Effects on the Membranes of a Seasonally Migrating Marine Copepod

    Get PDF
    Marine planktonic copepods of the order Calanoida are central to the ecology and productivity of high latitude ecosystems, representing the interface between primary producers and fish. These animals typically undertake a seasonal vertical migration into the deep sea, where they remain dormant for periods of between three and nine months. Descending copepods are subject to low temperatures and increased hydrostatic pressures. Nothing is known about how these organisms adapt their membranes to these environmental stressors. We collected copepods (Calanoides acutus) from the Southern Ocean at depth horizons ranging from surface waters down to 1000 m. Temperature and/or pressure both had significant, additive effects on the overall composition of the membrane phospholipid fatty acids (PLFAs) in C. acutus. The most prominent constituent of the PLFAs, the polyunsaturated fatty acid docosahexanoic acid [DHA – 22:6(n-3)], was affected by a significant interaction between temperature and pressure. This moiety increased with pressure, with the rate of increase being greater at colder temperatures. We suggest that DHA is key to the physiological adaptations of vertically migrating zooplankton, most likely because the biophysical properties of this compound are suited to maintaining membrane order in the cold, high pressure conditions that persist in the deep sea. As copepods cannot synthesise DHA and do not feed during dormancy, sufficient DHA must be accumulated through ingestion before migration is initiated. Climate-driven changes in the timing and abundance of the flagellated microplankton that supply DHA to copepods have major implications for the capacity of these animals to undertake their seasonal life cycle successfully

    The role of microbes in the nutrition of detritivorous invertebrates: a stoichiometric analysis

    Get PDF
    Detritus represents an important pool in the global carbon cycle, providing a food source for detritivorous invertebrates that are conspicuous components of almost all ecosystems. Our knowledge of how these organisms meet their nutritional demands on a diet that is typically comprised of refractory, carbon-rich compounds nevertheless remains incomplete. ‘Trophic upgrading’ of detritus by the attached microbial community (enhancement of zooplankton diet by the inclusion of heterotrophic protozoans) represents a potential source of nutrition for detritivores as both bacteria and their flagellated protistan predators are capable of biosynthesizing essential micronutrients such as polyunsaturated fatty acids (PUFAs). There is however a trade-off because although microbes enhance the substrate in terms of its micronutrient content, the quantity of organic carbon is diminished though metabolic losses as energy passes through the microbial food web. Here, we develop a simple stoichiometric model to examine this trade-off in the nutrition of detritivorous copepods inhabiting the mesopelagic zone of the ocean, focusing on their requirements for carbon and an essential PUFA, docosahexaenoic acid (DHA). Results indicate that feeding on microbes may be a highly favourable strategy for these invertebrates, although the potential for carbon to become limiting when consuming a microbial diet exists because of the inefficiencies of trophic transfer within the microbial food web. Our study highlights the need for improved knowledge at the detritus-microbe-metazoan interface, including interactions between the physiology and ecology of the associated organisms

    Multilevel Modeling of Interval-Contingent Data In Neuropsychology Research Using the \u3ci\u3eImerTest\u3c/i\u3e Package In R

    Get PDF
    Intensive longitudinal research designs are becoming more common in the field of neuropsychology. They are a powerful approach to studying development and change in naturally occurring phenomena. However, to fully capitalize on the wealth of data yielded by these designs, researchers have to understand the nature of multilevel data structures. The purpose of the present article is to describe some of the basic concepts and techniques involved in modeling multilevel data structures. In addition, this article serves as a step-by-step tutorial to demonstrate how neuropsychologists can implement basic multilevel modeling techniques with real data and the R package, lmerTest. R may be an ideal option for some empirical scientists, applied statisticians, and clinicians, because it is a free and open-source programming language for statistical computing and graphics that offers a flexible and powerful set of tools for analyzing data. All data and code described in the present article have been made publicly available

    Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes

    Get PDF
    We studied the diet of Antarctic krill, Euphausia superba, at five stations across the southwest Atlantic sector in summer 2003 by analyzing stomach content, fatty acids, and stable isotopes on the same individuals. Our aim was to examine what each method could contribute to our understanding of krill nutrition and whether differences seen in growth rates were linked to their food. All three methods indicated clear regional differences in diet, but small ontogenetic and sex-related differences. Overall, diatoms were the most abundant item in the stomach, but at three of the stations, tintinnids, large dinoflagellates, and other armored flagellates dominated the identifiable biomass. Copepod remains were rare. Fatty acids profiles gave additional information about feeding on weakly silicified diatoms and athecate heterotrophic dinoflagellates, with the latter being the main food source at one of the stations. Two independent indices of carnivory, d15N and the fatty acid ratio 18:1(n-9)/18:1(n-7), were correlated among krill from the same swarm, suggesting consistent differences in diet between individuals. An internal index of trophic position, (i.e., d15Nglutamic acid-d15Nphenylalanine) underlined the importance of heterotrophic food for the nutrition of krill, even in summer. Highest growth rates of krill were found during a diatom bloom and coincided with a mixed diet, large digestive gland, and fast stomach passage. However, even in a nonbloom, flagellate-dominated system, krill were able to sustain medium growth rates when feeding on heterotrophic dinoflagellates. Each method supplied specific information on krill nutrition, and the true picture is only revealed when the various methods are used together

    Loss of buoyancy control in the copepod Calanus finmarchicus

    Get PDF
    A mechanism is demonstrated that could explain large-scale aggregations of lipid-rich copepods in the surface waters of marine environments. Laboratory experiments establish that changes in salinity and temperature induce lipid-mediated buoyancy instability that entrains copepods in surface waters. Reduced hydrostatic pressure associated with forced ascent of copepods at fjordic sills, shelf breaks and seamounts would also reduce the density of the lipid reserves, forcing copepods and particularly those in diapause to the surface. We propose that salinity, temperature and hydrodynamics of the physical environment, in conjunction with the biophysical properties of lipids, explain periodic high abundances of lipid-rich copepods in surface waters

    Correcting the Bias of Empirical Frequency Parameter Estimators in Codon Models

    Get PDF
    Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an adverse effect on goodness of fit and estimates of substitution rates. We propose a “corrected” empirical estimator that begins with observed nucleotide counts, but accounts for the nucleotide composition of stop codons. We show via simulation that the corrected estimates outperform the de facto standard estimates not just by providing better estimates of the frequencies themselves, but also by leading to improved estimation of other parameters in the evolutionary models. On a curated collection of sequence alignments, our estimators show a significant improvement in goodness of fit compared to the approach. Maximum likelihood estimation of the frequency parameters appears to be warranted in many cases, albeit at a greater computational cost. Our results demonstrate that there is little justification, either statistical or computational, for continued use of the -style estimators

    Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles

    Full text link
    Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport coefficients of simple monatomic, equilibrium fluids in specific dimensionless forms makes them approximately single-valued functions of excess entropy. This has predictive value because, while the transport coefficients of dense fluids are difficult to estimate from first principles, excess entropy can often be accurately predicted from liquid-state theory. Here, we use molecular simulations to investigate whether Rosenfeld's observation is a special case of a more general scaling law relating mobility of particles in mixtures to excess entropy. Specifically, we study tracer diffusivities, static structure, and thermodynamic properties of a variety of one- and two-component model fluid systems with either additive or non-additive interactions of the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle interactions in these fluids are consistent with an empirical scaling law relating the excess entropy to a new dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we introduce here. The dimensionless form of the tracer diffusivity follows from knowledge of the intermolecular potential and the transport / thermodynamic behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information, and provides more accurate predictions, than either Enskog theory or scalings based on the pair-correlation contribution to the excess entropy. As we show, however, it also suffers from some limitations, especially for systems that exhibit significant decoupling of individual component tracer diffusivities.Comment: 15 pages, 10 figure

    Experimental measurement of stress at a four-domain junction in lead zirconate titanate

    Get PDF
    A junction between two lamellar bands of ferroelectric domains in a lead zirconate titanate (PZT) ceramic is analysed using Kikuchi diffraction patterns in the transmission electron microscope. Indexing of the diffraction patterns allowed the determination of the 3D relative orientation of the 4 different domains at the junction and thus the characterisation of the domain boundaries. The local c/a ratio could also be determined from the misorientations at the domain boundaries. Analysis of the data showed that large stresses were concentrated at the junction, and that this is inevitable at such band junctions. Such stress concentrations could act as nuclei for cracking of the ceramic under additional loading in service, perhaps particularly as a consequence of extended electromechanical cycling. Moreover, the stresses would increase with increasing c/a making the issues all the more serious for Ti-rich compositions having larger c/a ratios
    • 

    corecore