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ABSTRACT 29	

Intensive longitudinal research designs are becoming more common in the field of 30	

neuropsychology. They are a powerful approach to studying development and change 31	

in naturally occurring phenomena. However, to fully capitalize on the wealth of data 32	

yielded by these designs, researchers have to understand the nature of multilevel data 33	

structures. The purpose of the present article is to describe some of the basic concepts 34	

and techniques involved in modeling multilevel data structures. In addition, this article 35	

serves as a step-by-step tutorial to demonstrate how neuropsychologists can implement 36	

basic multilevel modeling techniques with real data and the R package, lmerTest. R 37	

may be an ideal option for some empirical scientists, applied statisticians, and clinicians, 38	

because it is a free and open-source programming language for statistical computing 39	

and graphics that offers a flexible and powerful set of tools for analyzing data. All data 40	

and code described in the present article have been made publicly available.   41	

 42	

Keywords: Statistical Methods, Multilevel Modeling, Hierarchical Linear Modeling, 43	

Linear Mixed-Effects Modeling, R  44	

 45	

 46	

 47	

 48	

 49	
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 51	



Running head: MULTILEVEL MODELING USING R 3 

Multilevel Modeling of Interval-Contingent Data in Neuropsychology Research 52	

Using the lmerTest Package in R 53	

 Over the past three decades, researchers across the social and behavioral 54	

sciences have increasingly become interested in using intensive longitudinal designs to 55	

study naturally occurring phenomena. This is particularly the case for pediatric 56	

neuropsychologists, who may be interested in the developmental trajectories of 57	

neurological disorders and behavior problems (e.g., Infante, Nguyen-Louie, Worley, 58	

Courtney, Coronado, & Jacobus, 2020; Sullivan, Brumback, Tapert, Brown, Baker, 59	

Colrain, Prouty, De Bellis, Clark, Nagel, Pohl, & Pfefferbaum, 2019) or the long-term 60	

consequences of traumatic brain injury (e.g., Séguin, Dégeilh, Bernier, El-Jalbout, & 61	

Beauchamp, 2020). For instance, a recent Google Scholar search of the terms 62	

“developmental trajectory” and “neuropsychology” yielded over 6,000 hits just for the 63	

year 2020. Neuropsychologists can employ such designs to examine microlevel 64	

processes and investigate how spontaneous experiences in their natural environment 65	

interact with stable characteristics to influence behavior, without the limitations imposed 66	

on by retrospective reporting (Bolger, Davis, & Rafaeli, 2003; Wheeler & Reis, 1991). 67	

However, the complexity of the data yielded in such designs often present the 68	

researcher with analytic challenges. The goal of the present article is to introduce 69	

multilevel modeling (MLM; sometimes referred to as hierarchical linear modeling or 70	

linear mixed-models), which is thought to be one of the best methods for analyzing data 71	

generated from intensive repeated assessment (Nezlek, 2011a). A second goal is to 72	

illustrate how to perform MLM analyses in R (i.e., a free and open-source programming 73	

language for statistical computing and graphics; see Weston & Yee, 2017) with the 74	
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lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2017) and real data. This 75	

article is intended for researchers with primary experience in ordinary least squares 76	

(OLS)-based techniques, such as regression and analysis of variance (ANOVA). For 77	

those readers who are interested in a more thorough explication of MLM, there are a 78	

number of excellent, authoritative introductions to the technique, including: Raudenbush 79	

and Bryk (2002), Kreft and de Leeuw (1998), and Snijders and Bosker (2012). A 80	

particularly user-friendly resource for the non-expert is Nezlek’s (2011b) brief 81	

introduction to MLM.  82	

Conceptual Background 83	

 Multilevel, or hierarchical, data structures are clustered data structures 84	

(sometimes referred to as nested data), such that observations at one level of analysis 85	

(e.g., ratings of daily stressors each night for a 30-day period) are clustered (or nested) 86	

within observations at another level of analysis (e.g., individual clients). Nesting can 87	

occur within participants, as in the case of studies that employ an intensive longitudinal 88	

or repeated-measures design. However, nesting can also occur between groups. 89	

Indeed, the fields of education (where students are nested within classrooms or 90	

schools) and organizational psychology and economics (where workers are nested 91	

within companies or industries) each have long, rich histories of studying and modeling 92	

multilevel data structures (e.g., Bryk & Raudenbush, 1992; Hoffman, 1997; Kreft & de 93	

Leeuw, 1994; Raudenbush & Bryk, 1986, 1988). This clustering or nesting creates 94	

dependency in the data, such that subsets of cases or responses are more similar to 95	

each other and, thus, more highly correlated with each other than with cases or 96	

responses in other subsets. The current article focuses on data structures typical in 97	
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studying repeated assessments of naturally occurring phenomena; however, the 98	

principles and techniques discussed below are also relevant to grouped or 99	

organizational data structures. Figure 1 illustrates a three-level hierarchical data 100	

structure potentially relevant to intensive longitudinal research designs in pediatric 101	

neuropsychology. 102	

 103	

 104	

Figure 1. Example illustration of a three-level data structure, such that responses or 105	

assessments over time are nested within clients, and clients are nested within 106	

therapeutic practices. 107	

 108	

 Data from intensive repeated assessments can be further described as either 109	

interval-contingent or event-contingent (Nezlek, 2001, 2011a; Wheeler & Reis, 1991). 110	

Interval-contingent data occurs when participants provide data at a certain interval. For 111	

example, in diary-style research, participants typically report on their daily mood and 112	
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relationships once per day (often at night), and daily responses are treated as being 113	

nested within participants (e.g., Gilbert, Pond, Haak, DeWall, & Keller, 2015; Pond, 114	

Kashdan, DeWall, Savostyanova, Lambert, & Fincham, 2012). Event-contingent data 115	

occur when a specific type of event triggers data collection efforts. For instance, in 116	

experience-sampling research, it’s common to have participants make reports each time 117	

they engage in a social interaction (e.g., DeWall, Lambert, Pond, Kashdan, & Fincham, 118	

2012; Nezlek, 1995; Nezlek, Hampton, & Shean, 2000), and interactions are treated as 119	

being nested within participants. Although the present article focuses on interval-120	

contingent data, the principles and techniques discussed below also apply to event-121	

contingent data.  122	

Limitations of OLS 123	

 The dependency of nested data inherently violates the assumption of 124	

independence in OLS regression. The consequence of this dependency is that the 125	

standard errors produced by OLS are too small (Cohen, Cohen, Aiken, & West, 2003). 126	

This means that any confidence intervals or significance tests generated with those 127	

standard errors will be biased towards over-estimating significance (i.e., Type I error 128	

inflation). The more similar scores are within clusters, the more serious the problem. 129	

Furthermore, dependency is a particular concern for data that are nested as a result of 130	

repeated-assessments over time, which may be more relevant to the research designs 131	

of pediatric neuropsychologists (e.g., Infante et al., 2020), as opposed to nesting due to 132	

group membership (e.g., students nested within classrooms or people nested within 133	

families). The dependency that occurs in longitudinal designs deserves special attention 134	

here because of a phenomenon known as autocorrelation. Autocorrelation is present 135	
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when adjacent observations are more strongly related to each other than nonadjacent 136	

observations (West & Hepworth, 1991). In longitudinal designs, observations that are 137	

closer in time tend to be more strongly related to each other than observations spaced 138	

further apart (e.g., the stress ratings of participants on day 1 will tend to be strongly 139	

correlated with their stress ratings on day 2 than on day 25 in a month-long diary study). 140	

Autocorrelation reduces estimates of within-person variability, biases standard errors, 141	

and inflates the Type I error rate of significance tests (Bolger et al., 2003).    142	

 OLS-based analytic strategies for handling multilevel data structures generally 143	

fall into two categories (Cohen et al., 2003; Nezlek, 2001). The first is to completely 144	

ignore the nesting and analyze responses as if there were no hierarchical structure 145	

(disaggregated analysis). This method is most at risk of Type I error inflation; however, 146	

dummy codes for cluster membership can be entered as predictors to partial out the 147	

average influence of cluster. This modified approach is limited in that: 1. it treats the 148	

cluster effect as fixed, meaning that one can only generalize to the specific clusters 149	

(e.g., specific persons or groups) that were represented in the sample and not a larger 150	

population from which one’s clusters may have been randomly sampled (Cohen et al., 151	

2003), and 2. it ignores between-cluster variation (i.e., the associations among modeled 152	

variables may be different for some clusters compared to others) (Nezlek, 2001). 153	

 The second OLS-based approach to handling multilevel data is to take the 154	

cluster average for each predictor and outcome and treat cluster as the unit of analysis 155	

in one’s regression (aggregated analysis). Aggregated analysis leads to a loss of 156	

information, and, thus, power, and the reliability of the observations that go into each 157	

cluster mean is not taken into account (Nezlek, 2001). Perhaps most concerning is that 158	
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the results of aggregated analyses are limited to the cluster level; results cannot be 159	

generalized to level 1 units (Cohen et al., 2003). This can promote misleading 160	

conclusions. For instance, does it make sense to suggest someone suffers from chronic 161	

stress based on this person’s average level of stress reported across a 7-day period? 162	

Perhaps, this person just had a stressful few days.       163	

Advantages of Multilevel Modeling 164	

 Multilevel modeling is an appropriate technique for modeling clustered data, 165	

because it was designed specifically to account for the cluster-level dependency that 166	

violates the assumption of independence in OLS regression. That is, MLM accounts for 167	

cluster-level dependency because it models multiple error terms across each level of 168	

analysis. It accomplishes this by estimating a regression equation for each unit of 169	

analysis at the lowest level, and then those coefficients (i.e., intercepts and slopes) are 170	

used as dependent variables in regressions at the next level of analysis (Nezlek, 171	

2011b). Furthermore, despite separate equations for each level of analysis, all 172	

coefficients are estimated with maximum likelihood procedures simultaneously, and 173	

lower-level coefficients are estimated with two parameters: a fixed component and a 174	

random error term. In the context of a repeated-measures study, the fixed component 175	

would represent the average value for a parameter of interest (i.e., intercept or slope) 176	

across all subjects, whereas the random error would represent how much those 177	

parameters tend to vary across subjects. Thus, when one models repeated-measures 178	

with MLM, the model yields the average intercept and slope(s) across subjects (fixed 179	

components); however, the presence of significant random variance indicates that the 180	

intercepts and slope(s) significantly vary across each subject (as illustrated in Figure 2). 181	
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The advantage of modeling random error this way is that we don’t need to assume that 182	

associations between our predictor variables and outcome are the same across each 183	

subject, which we would need to whenever using OLS (i.e., the homoscedasticity 184	

assumption in OLS regression). Instead, we can explicitly model this variability by 185	

examining between-person differences. Furthermore, modeling individual differences in 186	

intercepts and slopes can eliminate the problem of autocorrelation for repeated-187	

measures (Bolger et al., 2003; Singer, 1998). 188	

 189	

  190	

Figure 2. Example illustration of a model with a random intercept (different starting 191	

points for participants) and a random slope (association between X and Y varies across 192	

participants). The overall model fitted line is also plotted (fixed components for intercept 193	

and slope). 194	

 195	

 MLM not only accounts for the nested structure of data, but it also uses 196	

algorithms that apply Bayes shrinkage to weight observations by their reliabilities. This 197	
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method moves outliers, or less reliable observations, closer to the mean (Nezlek, 198	

2011b). By using Bayes shrinkage, more accurate estimates, relative to population 199	

measures, are achieved when compared to procedures that do not employ Bayes 200	

shrinkage (Littell et al., 1996; Raudenbush & Bryk, 2002). A final advantage to using 201	

MLM is that multilevel models do not require complete data sets. OLS-based 202	

procedures (e.g., regression, ANOVA) perform best with balanced designs and the 203	

absence of missing data. Oftentimes, in repeated-measures designs, cases with 204	

missing data at one time-point need to be deleted. For MLM, when data are missing on 205	

an outcome at a certain time-point, whole cases do not need to be deleted, nor do 206	

missing values on y need to be imputed. Instead, parameters are estimated with all 207	

available data using maximum likelihood procedures.  208	

An Illustrative Example: Cerebral Asymmetry and Aggressive Tendencies 209	

 In the remainder of this article, we will demonstrate multilevel modeling with real 210	

interval-contingent data collected from a sample of young adults (Mage=18.70) across a 211	

21-day period. We will use these data to test the hypothesis that within-person 212	

differences in cerebral asymmetry are associated with daily aggressive tendencies. The 213	

research literature shows that approach motivation, as well as traits and emotions linked 214	

to approach motivation, are positively associated with aggressive behavior (e.g., Carver, 215	

2004; Carver & Harmon-Jones, 2009; Harmon-Jones, 2003; Harmon-Jones, Harmon-216	

Jones, Abramson, & Peterson, 2009; Harmon-Jones & Peterson, 2008, 2009; Wilkowski 217	

& Meier, 2010). On the other hand, traits and emotions related to behavioral avoidance 218	

are typically inversely associated with aggression (e.g., Harmon-Jones, 2003; Pond, 219	

DeWall, Lambert, Deckman, Bonser, & Fincham, 2012; Smits & Kuppens, 2005). 220	
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Asymmetrical activation in the frontal cortices is closely linked to both approach and 221	

avoidance motivation. Indeed, greater left frontal activity tends to be associated with 222	

approach-related emotions (e.g., anger, joy; Drake & Myers, 2006), whereas right 223	

frontal activity tends to be associated with avoidance-related emotions (e.g., fear, 224	

disgust; Davidson, Ekman, Saron, Senulis, & Friesen, 1990; Harmon-Jones & Allen, 225	

1998). Thus, one may predict that days in which people exhibit greater left frontal 226	

activity (vs right frontal activity) would be associated with greater aggressive tendencies. 227	

We can test this hypothesis by modeling daily aggressive tendencies as a function of a 228	

level-1 predictor (daily left vs right frontal activity). To illustrate the influence of level-2 229	

predictors, on both level-1 and level-2, we will include gender and trait agreeableness 230	

into our model, as males tend to be more physically aggressive than females in general 231	

(Bettencourt & Miller, 1996) and agreeableness is negatively associated with 232	

aggressiveness (Meier & Robinson, 2004; Meier, Robinson, & Wilkowski, 2006; Ode, 233	

Robinson, & Wilkowski, 2008; Wilkowski, Robinson, & Meier, 2006). One may predict 234	

that the association between daily left frontal activity and daily aggressive tendencies 235	

will be strongest among people who are male and among people who are low in 236	

agreeableness.   237	

 We will perform our MLM analyses using the lmerTest package (Version 3.1-2; 238	

Kuznetsova et al., 2017) in R (Version 4.0.2). The lmerTest package requires the lme4 239	

package to also be installed (Bates, Mächler, Bolker, & Walker, 2015). R is a free and 240	

open-source programming language with a powerful set of tools for statistical computing 241	

and graphics. Although MLM analyses with the lmerTest package are relatively 242	

straightforward, it will require some basic knowledge of coding in R. All data and code 243	
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for the following analyses can be found on the Open Science Framework (at: 244	

https://osf.io/vprwb/?view_only=473085ce5bbd420d868b216e63a64fd0) for later 245	

reference. 246	

METHOD 247	

Participants 248	

 Participants were 106 (76 females) undergraduates from a public university in the 249	

Southeastern United States. Of the 106 participants, the mean age was 18.70 years 250	

(SD=1.53). 7.5% of the participants identified as more than one race, 4.6% were African 251	

American, 3.7% were Asian, 79.5% were Caucasian, and 4.6% did not report their race. 252	

Students who participated in the experiment were given partial research credit needed 253	

for their Introduction to Psychology course and were paid $20.  254	

Measures 255	

 Trait agreeableness. Participants completed the agreeableness subscale of the 256	

Big Five Inventory (John, Donahue, & Kentle, 1991; John, Naumann, & Soto, 2008). 257	

Participants rated their agreement (1=strongly disagree, 5=strongly agree) according to 258	

how much they believed each statement (e.g., “Is helpful and unselfish with others”, “Is 259	

generally trusting”) applied to them. Items were summed to create a composite score, 260	

where higher totals reflected greater levels of trait agreeableness (M=34.41, SD=5.82; 261	

Cronbach’s α=0.80).  262	

 Daily visual field bias. Each day participants completed a modified version of the 263	

line bisection task (Milner, Brechmann, & Pagliarini, 1991). A line with a perpendicular 264	

marker was placed on the screen. One line had the marker placed 5mm to the left of 265	

center, one had the marker in the center, and another had the marker 5mm to the right 266	
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of center. Participants were asked to indicate whether the marker was to the left of 267	

center, to the right of center, or directly in the center. Items were scored such that 268	

inaccurate left responses yielded negative values and inaccurate right responses 269	

yielded positive values. Inaccurately choosing “right of center” means that one 270	

perceives the left side of the line as longer than it really is. Thus, after summing across 271	

items, higher values indicated left visual field bias (M=0.07, SD=0.56). Left visual field 272	

bias is a correlate of right frontal activation (Nash, McGregor, & Inzlicht, 2010).   273	

 Daily aggressive tendencies. Participants completed an abbreviated form of the 274	

physical (e.g., “Given enough provocation today, I might hit another person”) and verbal 275	

(e.g., “If people were annoying me today, I would tell them what I think of them) 276	

aggression subscales of the Aggression Questionnaire (AQ; Buss & Perry, 1992), which 277	

was modified for daily use. This measure was used because self-reported propensities 278	

toward physical and verbal aggression are strongly related to behavioral aggression 279	

(Giancola & Parrott, 2008). Items were summed to form a composite score, such that 280	

higher numbers indicated greater levels of daily aggressive tendencies (M=7.98, 281	

SD=5.08; person-level α=0.961). 282	

Procedure 283	

 The study was conducted with the institutional internal review board’s approval. 284	

Informed consent was obtained during the initial laboratory visit and then participants 285	

completed demographic questions and several surveys, including the Big Five 286	

Inventory. Following the initial visit, participants were given a URL code specific to them 287	

of a secure server to complete their daily logs. The participants were instructed to 288	

access this page each night for the following 21 days. Email reminders were sent to 289	
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each participant nightly to remind them to fill out their log. Overall, 106 participants 290	

completed 1617 logs out of a possible 2226 days, indicating a 73% response rate. 291	

Participants averaged 15.25 days of responding (ranging from 1 to 21 days).  292	

Results 293	

Preliminary Analysis: Degree of Dependency 294	

 Computing the intraclass correlation coefficient (ICC) for our dependent variable 295	

is an important first step in any multilevel modeling analysis. The ICC indicates the 296	

degree of dependency in our observations. That is, it tells us what proportion of 297	

variance in our outcome is accounted for by the clustering of observations (i.e., daily 298	

logs nested within participants; Shrout & Fleiss, 1979). The ICC ranges from 0 to 1, with 299	

larger values indicating greater dependency in the data, and, thus, greater inflation of 300	

the Type I error rate if that dependency is not accounted for (Cohen et al., 2003). The 301	

formula for the ICC is: 302	

σ 2
τ

(σ 2
τ +σ

2
W )

 303	

such that σ 2
τ  represents the amount of variance in an outcome due to differences 304	

between people (in a repeated-measures design) and σ 2
W represents the pooled within-305	

person error variance. Thus, σ 2
τ +σ

2
W  represents the total observed variance in our 306	

outcome.  307	

One obtains these parameters, σ 2
τ  and σ 2

W , by estimating an unconditional (null) 308	

model for the dependent variable. An unconditional model is a multilevel model with no 309	

predictors, just an intercept. The basic two-level model is as follows: 310	
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yij = β0 j + eij
β0 j = γ00 +u0 j

 311	

such that yij represents daily reports of aggressive tendencies (with i reports for j 312	

individuals); β0 j  is the mean aggressive tendencies for each person aggregated across 313	

days; eij is the day-level, within-person variance around that mean (which is our 314	

estimate of σ 2
W ); γ00 is the grand mean for aggressive tendencies; and u0j is the 315	

between-person variance around the grand mean (which is our estimate of σ 2
τ ). Thus, 316	

the first equation is the day-level or within-person part of the model (level-1) and the 317	

second equation is the between-person part of the model (level-2). The multilevel model 318	

could then be reduced by replacing terms to the following form:  319	

yij = γ00 +u0 j + eij  320	

 We can use the lmerTest package in R to run our unconditional model for daily 321	

aggressive tendencies using the lmer (for linear mixed-effects regression) function: 322	

 323	

Model.Null <- lmer(VerbPhysAggSum ~ 1 + (1 | ID), data = LineBisectionStudy) 324	

 325	

With this code, we created the object “Model.Null”, which is the name of our 326	

unconditional model (object names are user-defined and can be whatever you like). 327	

Within the lmer() function, we insert the formula for our regression. The variable to the 328	

left of the “~” is our outcome or dependent variable (we named it “VerbPhysAggSum”) 329	

and everything to the right are the predictors. Because this is an unconditional model, 330	

there are no predictors. There is only an intercept, which we model with a “1”. 331	
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Furthermore, everything to the left of our inner parentheses are the fixed components of 332	

our estimates and everything within those inner parentheses are the random 333	

components. We specify the level-1 variables for which we want a random error term to 334	

the left of the “|” and the grouping (clustering) variable to the right. Because daily reports 335	

are nested with participants, participant ID is our grouping variable. Thus, we are 336	

predicting daily reports of aggressive tendencies with an intercept and a random error 337	

term around that intercept. Finally, we have to specify which data set (or dataframe in R 338	

terminology) to work from. After running the code for the model, we can use the 339	

summary() function to get our output, as in:  340	

 341	

summary(Model.Null) 342	

 343	

Within the random effects part of the output, one should see a variance for the intercept 344	

of 18.69. This is our estimate of σ 2
τ  (the between-person variance). We also have a 345	

residual variance of 7.76. This is our estimate of σ 2
W (the within-person variance). Using 346	

the formula for the ICC, we get 0.71, which indicates that 29% of the variability in daily 347	

aggressive tendencies was within-person and 71% of the variability was due to 348	

between-person differences.   349	

Model Building  350	

  Level-1 predictor. Our ICC indicates that there is a great amount of dependency 351	

in our daily reports of aggressive tendencies as a function of person-level clustering. 352	

Thus, use of MLM to test our main hypotheses is warranted. We predicted that days in 353	

which people exhibit greater left frontal activity (vs right frontal activity) would be 354	
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associated with greater aggressive tendencies. We can modify our unconditional model 355	

to test these hypotheses by adding in a level-1 predictor for daily visual field bias (VFB). 356	

Because it is a level-1 predictor, we can also estimate a random error term for its slope. 357	

Level-1 coefficients with a random error term added are said to be randomly varying, 358	

whereas level-1 coefficients without the random error term are said to be fixed (which 359	

shouldn't be confused with the estimate of the fixed component itself––the average 360	

coefficient for that predictor). Nezlek (2011a) argues that all level-1 coefficients should 361	

be modeled as randomly varying, so long as those random error terms can be 362	

estimated reliably. Sometimes random error terms cannot be estimated reliably and 363	

their presence may cause failure in model convergence. In such cases, removal of a 364	

random error term may be warranted.  365	

The updated level-1 equation would then be: 366	

yij = β0 j +β1 j (VFBij )+ eij  367	

and the updated level-2 equations are: 368	

Intercept: β0 j = γ00 +u0 j  369	

VFB: β1 j = γ10 +u1 j  370	

such that γ10 is the average slope across participants describing the relationship 371	

between daily visual field bias and daily aggressive tendencies; and u1 j is the between-372	

person random variance around that average slope. Replacing terms, the reduced form 373	

equation would then be:  374	

yij = γ00 +γ10 (VFBij )+u0 j +u1 j (VFBij )+ eij  375	
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However, prior to adding level-1 predictors to one’s unconditional model, 376	

researchers should first consider centering options for their continuous variables. 377	

Centering refers to the process of transforming a variable into deviations around a fixed 378	

reference point. Centering is not as straightforward for MLM as it is for OLS-based 379	

regression, and there is no universal consensus among modelers on what type of 380	

centering is best. For a more thorough discussion of centering in the context of MLM, 381	

please see Enders and Tofighi (2007), Kreft and de Leeuw (1998), Kreft, de Leeuw, and 382	

Aiken (1995), and Bryk and Raudenbush (1992). Furthermore, centering is not a trivial 383	

matter in MLM. It’s not employed just for facilitating the interpretation of model 384	

parameters. Rather, differences in centering options can actually change the models 385	

and hypotheses being tested.  386	

Level-1 predictors can be entered either uncentered, grand mean-centered (i.e., 387	

centering each score around the variable’s mean for all cases in the sample), or group 388	

mean-centered (i.e., centering each score around the cluster mean in which that 389	

particular case occurs; referred to as person-centering in repeated-measures designs or 390	

sometimes centering within context). Models with level-1 predictors entered either 391	

uncentered or grand mean-centered are statistically equivalent. However, differences 392	

arise with group mean-centering. To summarize the general arguments on centering in 393	

the literature cited above, when level-1 predictors are entered grand mean-centered, 394	

between-cluster differences actually influence level-1 parameter estimates. Thus, level- 395	

1 effects are confounded by level-2 differences. For instance, in the context of the 396	

present study, suppose that daily reports of visual field bias were associated with 397	

aggressive tendencies. If the predictor was grand mean-centered, then we wouldn’t be 398	
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able to separate daily fluctuations in visual field bias from general person-level 399	

individual differences. Perhaps more aggressive people tend to be biased toward the 400	

right visual field, in general, and less aggressive people tend to be biased toward the 401	

left? In this case, the level-1 test would say little about the impact of daily fluctuations in 402	

visual field bias on aggressive tendencies. For researchers interested in development or 403	

within-person change, those daily fluctuations are of interest.  404	

When level-1 predictors are entered group mean-centered, level-2 differences 405	

are removed from level-1 parameter estimates (because cluster means are subtracted 406	

from each score within that cluster). Thus, instead of contributing to level-1 effects, 407	

those level-2 differences are controlled. In the context of our study, if visual field bias is 408	

person-centered, then the slope would represent predicted aggressiveness as a 409	

function of daily, within-person change in left versus right field bias compared to what is 410	

typical for each separate participant. Most authors tend to recommend group mean-411	

centering level-1 predictors in MLM; however, there is disagreement about how level-2 412	

differences should be addressed. Normally with group mean-centering, level-2 413	

differences are removed. That removal treats the analysis as though all clusters have 414	

exactly the same mean, which would be erroneous if the researcher was actually 415	

interested in between-cluster differences (Kreft & de Leeuw, 1998). This error can be 416	

corrected by re-introducing the cluster means as a level-2 predictor of the level-1 417	

intercept (however, see Hox et al., 2017 for a counter-argument against re-introducing 418	

cluster means).  419	
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In the following analysis, daily visual field bias was person-centered and the 420	

person-level means were entered as a level-2 predictor of the intercept (to re-introduce 421	

those level-2 differences). The level-1 equation becomes: 422	

yij = β0 j +β1 j (VFBij − XVFB. j )+ eij  423	

and the level-2 equations become: 424	

Intercept: β0 j = γ00 +γ01(XVFB. j )+u0 j  425	

VFB: β1 j = γ10 +u1 j  426	

such that γ01 is the average slope between individual differences in typical visual field 427	

bias and average daily aggressive tendencies across participants. Replacing terms, the 428	

reduced form equation would then be: 429	

yij = γ00 +γ10 (VFBij − XVFB. j )+γ01(XVFB. j )+u0 j +u1 j (VFBij − XVFB. j )+ eij  430	

To model our level-1 predictor, we can modify our code for the lmer() function:  431	

 432	

MLMLevel1model <- lmer(VerbPhysAggSum ~ 1 + GRCbias + GRPMnbias + (1 433	

+ GRCbias | ID), data = LineBisectionStudy) 434	

 435	

We created our new object (MLMLevel1model) by adding two fixed components 436	

and one random error term to our unconditional model. One fixed component 437	

represents the average slope for daily visual field bias, person-centered (GRCbias), 438	

and, because it is a level-1 variable, we can model a random error term for it. The next 439	

fixed component represents the slope for person-level individual differences in visual 440	

field bias, on average, across the study period (GRPMnbias), which is a level-2 441	
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predictor and, thus, has no random error term (this is a two-level model, so there are no 442	

level-3 units for this slope to vary across).  443	

Using the same summary() function as before (with the new model name 444	

entered), we obtain our results. Again, we predicted that days in which people exhibited 445	

greater right visual field bias (as opposed to left visual field bias) would be associated 446	

with greater aggressive tendencies, given the literature linking right visual field bias, left 447	

frontal activity, behavioral approach, and aggression (e.g., Harmon-Jones & Peterson, 448	

2008; Nash et al., 2010). Contrary to hypotheses, daily increases in left visual field bias 449	

(an indicator of right frontal activity) was positively associated with aggressive 450	

tendencies, b=0.76, t(33.35)=2.28, p=0.029.2 Furthermore, people who tended to exhibit 451	

greater left visual field bias, in general, over the study period also tended to report 452	

greater aggressive tendencies compared to those who generally exhibited right visual 453	

field bias, b=2.18, t(111.48)=2.13, p=0.035.   454	

Level-2 predictors and cross-level interactions. We will now demonstrate how to 455	

explore traditional level-2 predictors and potential cross-level interactions. Cross-level 456	

interactions allow us to examine whether level-1 slopes vary as a function of level-2 457	

predictors (sometimes referred to as slopes-as-outcomes analysis; Nezlek, 2001). In the 458	

present study, we included the level-2 (person-level) variables of gender and trait 459	

agreeableness, because males tend to be more physically aggressive than females 460	

(e.g., Bettencourt & Miller, 1996) and trait agreeableness tends to be negatively 461	

associated with aggressiveness (e.g., Ode, Robinson, & Wilkowski, 2008). We will 462	

modify our level-2 equations to include main effects (slopes) for gender and 463	

agreeableness, as well as one gender x visual field bias interaction and one 464	
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agreeableness x visual field bias interaction. The level-1 equation remains:  465	

yij = β0 j +β1 j (VFBij − XVFB. j )+ eij  466	

however, the level-2 equations change to: 467	

Intercept: β0 j = γ00 +γ01(XVFB. j )+γ02 (Gender. j )+γ03(Agreeableness. j )+u0 j  468	

VFB: β1 j = γ10 +γ11(Gender. j )+γ12 (Agreeableness. j )+u1 j  469	

such that γ02  represents the slope between gender and average daily aggressive 470	

tendencies across participants (i.e., the main effect for gender); γ03  represents the slope 471	

between trait agreeableness and average daily aggressive tendencies across 472	

participants (i.e., the main effect for agreeableness); γ11 represents the cross-level 473	

interaction between gender and visual field bias (i.e., we are predicting whether the 474	

slope between daily visual field bias and aggressive tendencies varies as a function of 475	

gender); and γ12 represents the cross-level interaction between trait agreeableness and 476	

daily visual field bias. Replacing terms, the reduced form equation would then be: 477	

yij = γ00 +γ10 (VFBij − XVFB. j )+γ01(XVFB. j )+γ02 (Gender. j )

+γ03(Agreeableness. j )+γ11((VFBij − XVFB. j )*Gender. j )

+γ12 ((VFBij − XVFB. j )*Agreeableness. j )+u0 j +u1 j (VFBij − XVFB. j )+ eij

 478	

 In a two-level model, entering level-2 predictors is fairly straightforward. For 479	

continuous variables, predictors can be entered either uncentered or grand mean-480	

centered. The choice will not change model tests or hypotheses, because the options 481	

are statistically equivalent. We tend to enter continuous level-2 predictors grand mean-482	

centered to facilitate interpretation of model coefficients. Categorical predictors, on the 483	

other hand, should be entered uncentered and either dummy or contrast-coded (Cohen 484	
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et al., 2003; Nezlek, 2011a).  485	

To model our level-2 predictors, we can modify our code for the lmer() function 486	

as such: 487	

 488	

MLMmodelCross <- lmer(VerbPhysAggSum ~ 1 + GRCbias + GRPMnbias +  489	

GMCagreeable + Male + GRCbias:GMCagreeable + GRCbias:Male + (1 + 490	

GRCbias | ID), data = LineBisectionStudy) 491	

 492	

 We added fixed components for gender (dummy-coded as 0=Female and 493	

1=Male) and trait agreeableness (GMCagreeable), as well as the relevant cross-level 494	

interactions (the lmer() function uses “:” to indicate interactions). Recall that level-2 495	

predictors do not have random error terms in a two-level model, so no adjustment is 496	

needed to the random part of the code.  497	

 Using the same summary() function as before (with the new model name 498	

entered), we obtain our results (see Table 1 for results of final model). As predicted, 499	

males tended to report more aggressive tendencies across the study period, and trait 500	

agreeableness was negatively associated with aggressive tendencies across the study 501	

period. Furthermore, the association between daily visual field bias and aggressive 502	

tendencies was qualified by a visual field bias x gender interaction. There was not a 503	

cross-level interaction with trait agreeableness.  504	

 505	

 506	

 507	
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Table 1  508	

Daily Aggressive Tendencies as a Function of Visual Field Bias (VFB; Person-509	

Centered), Gender, and Trait Agreeableness (Final Model) 510	

 511	
Parameter Variable   Estimate t-value df         p-value 512	
 513	
gamma_00 Intercept   7.45  16.52  97.90          <.001 514	
gamma_10 VFB (person-centered) 1.33       3.44     30.92           0.0017 515	
gamma_01 VFB (person means) 1.18       1.21    114.06         0.23 516	
gamma_02 Gender    2.63    2.92  106.05         0.004 517	
gamma_03 Agreeableness  -0.27  -3.98  99.53          0.0001 518	
gamma_11 VFB x Gender  -1.71  -2.54  31.88           0.016 519	
gamma_12 VFB x Agreeableness -0.07  -1.18  30.70          0.25 520	
 521	
 522	

 To evaluate the nature of significant interactions in MLM, researchers can use 523	

procedures recommended by Aiken and West (1991) and Preacher and colleagues 524	

(2006). Computational tools for probing simple slopes for interactions in MLM can be 525	

found here: http://quantpsy.org/interact/hlm2.htm. Although, daily visual field bias was 526	

generally not associated with aggressive tendencies for males, b=-0.38, t=-0.69, 527	

p=0.49, males who exhibited right visual field bias were much more aggressive than 528	

females who exhibited similar right visual field bias, b=3.36, t=3.51, p=0.0007, as may 529	

be anticipated. However, for females, days with greater left field visual bias (versus right 530	

field bias) were associated with more aggressive days, b=1.33, t=3.44, p=0.0008. 531	

Because we used the lmerTest package to model our data, we can easily use the sjPlot 532	

package (version 2.8.4; Lüdecke, 2020) to plot our interaction and simple slopes with 533	

the plot_model() function, as in: 534	

 535	
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plot_model(MLMmodelCross, type = "int", mdrt.values = "minmax", colors = "bw", 536	

title = "", axis.title = c("Visual Field Bias", "Aggressive Tendencies")) 537	

  538	

such that the argument, type = “int”, indicates that we want to plot the interaction for the 539	

specified model name, and the argument, mdrt.values = “minmax”, indicates what 540	

values of the moderator for which we want simple slopes. The minimum/maximum value 541	

was chosen because our moderator in the visual field bias x gender interaction (i.e., 542	

gender) is categorical. For continuous moderators, researchers can choose the mean of 543	

the moderator and +/-1 SD (“meansd”). We also removed a plot title and added titles to 544	

our axes. The argument, colors = "bw", indicates that the plot is to be in black and white, 545	

so that group trajectories can be distinguished by dashed versus solid lines; however, 546	

this option can be modified to allow colored lines. Please see Figure 3 for the resulting 547	

plot. 548	

CONCLUSION 549	

 The present article described some of the basic concepts and techniques 550	

involved in modeling multilevel data structures. Furthermore, this article serves as a 551	

tutorial for implementing basic MLM techniques in the R package, lmerTest (version 3.1-552	

2; Kuznetsova et al., 2017) with real, publicly available data. The study and analyses 553	

were presented within the context of intensive longitudinal repeated-measures designs.   554	
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   555	

Figure 3. Daily aggressive tendencies as a function of daily fluctuations in visual field 556	

bias and gender. The shaded regions are confidence intervals around the slope lines, 557	

which can be removed with “ci.lvl=NA”. 558	

 559	

Specifically, the research design yielded interval-contingent data, where participants 560	

reported on their thoughts, feelings, and behaviors each evening for a 21-day period. 561	

This is a particularly powerful research design for studying growth and change in 562	

naturally occurring phenomena. Such designs appear to be on the rise among pediatric 563	

neuropsychologists, especially those interested in developmental trajectories of 564	

neurological disorders, behavior problems, and brain injury (e.g., Infante et al., 2020; 565	

Séguin et al., 2020). In such work, it is imperative that the researcher does not ignore 566	

the hierarchical structure of the data that were collected. Not only will ignoring cluster-567	

level dependency inflate one’s Type I error rate (i.e., increasing the risk of falsely 568	

declaring findings significant), but it also provides an inadequate and inaccurate 569	

representation of the sampled observations, as well as the populations they describe. 570	

Ultimately, this will contribute to the replicability and generalizability of one’s research 571	

findings.  572	
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The present paper was not meant to be exhaustive but rather demonstrate basic 573	

analyses in MLM. Although our article presented the analysis of a two-level model with 574	

interval-contingent data, the principles and techniques discussed can be generalized to 575	

the analysis of event-contingent or group/organizational data sets. Furthermore, the 576	

techniques discussed can be easily extended to accommodate three-level data 577	

structures. There are also a number of advanced topics in MLM that go beyond the 578	

scope of the present article. These include effect sizes, determining the statistical power 579	

of multilevel designs, mediation analyses, nonlinear and categorical dependent 580	

variables, and scale reliability. Interested readers are encouraged to read the work of 581	

Kreft and de Leeuw (1998), Raudenbush and Bryk (2002), Hox, Moerbeek, and van de 582	

Schoot (2017), Nezlek (2011b), Snijders and Bosker (2012), and Bauer and colleagues 583	

(2006). With that stated, we hope that this article will serve as a resource for 584	

researchers interested in implementing multilevel modeling in their own work.  585	
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FOOTNOTES 789	

1Although it is beyond the scope of the present article, it should be noted that traditional 790	

measurements of reliability (e.g., Cronbach’s α) do not correctly break down the total 791	

variance of multilevel data into the necessary error and systematic variances at each 792	

level (Hox & Kleiboer, 2007). Please see Nezlek (2007, 2011a, 2011b, 2017), Bonito 793	

and colleagues (2012), Geldhof and colleagues (2014), and Lai (in press) for 794	

recommendations on testing scale reliability with nested data. Furthermore, differences 795	

in variances of items can impact reliability estimates. Raudenbush and Bryk (2002) 796	

suggest rescaling items at level-1 to achieve relatively equal error variances across 797	

items, if needed. 798	

 799	

2	Multilevel modeling with the lmerTest package uses the Satterthwaithe approximation 800	

for obtaining degrees of freedom, which is a weighted average of the between and 801	

within degrees of freedom. Therefore, the Satterthwaithe approximation results in 802	

fractional degrees of freedom. Kenny, Kashy, and Cook (2006) recommend the 803	

Satterthwaithe estimate of degrees of freedom because it takes into account the mixture 804	

of between and within parts of the estimate. 805	
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