25 research outputs found

    Floquet-Markov description of the parametrically driven, dissipative harmonic quantum oscillator

    Get PDF
    Using the parametrically driven harmonic oscillator as a working example, we study two different Markovian approaches to the quantum dynamics of a periodically driven system with dissipation. In the simpler approach, the driving enters the master equation for the reduced density operator only in the Hamiltonian term. An improved master equation is achieved by treating the entire driven system within the Floquet formalism and coupling it to the reservoir as a whole. The different ensuing evolution equations are compared in various representations, particularly as Fokker-Planck equations for the Wigner function. On all levels of approximation, these evolution equations retain the periodicity of the driving, so that their solutions have Floquet form and represent eigenfunctions of a non-unitary propagator over a single period of the driving. We discuss asymptotic states in the long-time limit as well as the conservative and the high-temperature limits. Numerical results obtained within the different Markov approximations are compared with the exact path-integral solution. The application of the improved Floquet-Markov scheme becomes increasingly important when considering stronger driving and lower temperatures.Comment: 29 pages, 7 figure

    New Phytologist / The betrayed thief the extraordinary strategy of Aristolochia rotunda to deceive its pollinators

    Get PDF
    Pollination of several angiosperms is based on deceit. In such systems, the flowers advertise a reward that ultimately is not provided. We report on a previously unknown pollination/mimicry system discovered in deceptive Aristolochia rotunda (Aristolochiaceae). Pollinators were collected in the natural habitat and identified. Flower scent and the volatiles of insects (models) potentially mimicked were analyzed by chemical analytical techniques. Electrophysiological and behavioral tests on the pollinators identified the components that mediate the plantpollinator interaction and revealed the model of the mimicry system. The main pollinators of A. rotunda were female Chloropidae. They are food thieves that feed on secretions of true bugs (Miridae) while these are eaten by arthropod predators. Freshly killed mirids and Aristolochia flowers released the same scent components that chloropids use to find their food sources. Aristolochia exploits these components to deceive their chloropid pollinators. Aristolochia and other trap flowers were believed to lure saprophilous flies and mimic brood sites of pollinators. We demonstrate for A. rotunda, and hypothesize for other deceptive angiosperms, the evolution of a different, kleptomyiophilous pollination strategy. It involves scent mimicry and the exploitation of kleptoparasitic flies as pollinators. Our findings suggest a reconsideration of plants assumed to show sapromyiophilous pollination.(VLID)221519

    Reproducible measurable residual disease detection by multiparametric flow cytometry in acute myeloid leukemia

    No full text
    Measurable residual disease (MRD) detected by multiparametric flow cytometry (MFC) is associated with unfavorable outcome in patients with AML. A simple, broadly applicable eight-color panel was implemented and analyzed utilizing a hierarchical gating strategy with fixed gates to develop a clear-cut LAIP-based DfN approach. In total, 32 subpopulations with aberrant phenotypes with/without expression of markers of immaturity were monitored in 246 AML patients after completion of induction chemotherapy. Reference values were established utilizing 90 leukemia-free controls. Overall, 73% of patients achieved a response by cytomorphology. In responders, the overall survival was shorter for MRD(pos) patients (HR 3.8, p = 0.006). Overall survival of MRD(neg) non-responders was comparable to MRD(neg) responders. The inter-rater-reliability for MRD detection was high with a Krippendorffs α of 0.860. The mean time requirement for MRD analyses at follow-up was very short with 04:31 minutes. The proposed one-tube MFC approach for detection of MRD allows a high level of standardization leading to a promising inter-observer-reliability with a fast turnover. MRD defined by this strategy provides relevant prognostic information and establishes aberrancies outside of cell populations with markers of immaturity as an independent risk feature. Our results imply that this strategy may provide the base for multicentric immunophenotypic MRD assessment

    Karyotype complexity and prognosis in acute myeloid leukemia

    Get PDF
    A complex aberrant karyotype consisting of multiple unrelated cytogenetic abnormalities is associated with poor prognosis in patients with acute myeloid leukemia (AML). The European Leukemia Net classification and the UK Medical Research Council recommendation provide prognostic categories that differ in the definition of unbalanced aberrations as well as the number of single aberrations. The aim of this study on 3526 AML patients was to redefine and validate a cutoff for karyotype complexity in AML with regard to adverse prognosis. Our study demonstrated that (1) patients with a pure hyperdiploid karyotype have an adverse risk irrespective of the number of chromosomal gains, (2) patients with translocation t(9;11)(p21~22;q23) have an intermediate risk independent of the number of additional aberrations, (3) patients with greater than or equal to4 abnormalities have an adverse risk per se and (4) patients with three aberrations in the absence of abnormalities of strong influence (hyperdiploid karyotype, t(9;11)(p21~22;q23), CBF-AML, unique adverse-risk aberrations) have borderline intermediate/adverse risk with a reduced overall survival compared with patients with a normal karyotype
    corecore