16,891 research outputs found
Polarization of Lyman alpha radiation emitted by H/2S/ atoms in weak electric fields
Polarization prediction in modulated beam of ground state hydrogen atoms crossed by dc electron bea
Excitation of atomic hydrogen to the metasable 2 2S1/2 state by electron impact
Atomic hydrogen excitation to metastable 2 /2/ S sub 1/2 state by electron impac
Entry-Level Competencies of New Student Affairs Professionals: A Delphi Study
The study examines the perceptions of 104 mid- and senior-level student affairs administrators of positions, responsibilities, competencies, and theories important for professional practice for new student affairs professionals. In regard to competencies, the results of this study provide important information about preprofessional abilities that are integral to professional practice, and participants also identified several competencies not identified in prior research that may be important to positions involving high contact with students. These results, then, provide vital information for curriculum development in graduate preparation programs and for professional development training for new professionals
Noise-enhanced trapping in chaotic scattering
We show that noise enhances the trapping of trajectories in scattering
systems. In fully chaotic systems, the decay rate can decrease with increasing
noise due to a generic mismatch between the noiseless escape rate and the value
predicted by the Liouville measure of the exit set. In Hamiltonian systems with
mixed phase space we show that noise leads to a slower algebraic decay due to
trajectories performing a random walk inside Kolmogorov-Arnold-Moser islands.
We argue that these noise-enhanced trapping mechanisms exist in most scattering
systems and are likely to be dominant for small noise intensities, which is
confirmed through a detailed investigation in the Henon map. Our results can be
tested in fluid experiments, affect the fractal Weyl's law of quantum systems,
and modify the estimations of chemical reaction rates based on phase-space
transition state theory.Comment: 5 pages, 5 figure
An infrared imaging search for low-mass companions to members of the young nearby beta Pic and Tucana/Horologium associations
We present deep high dynamic range infrared images of young nearby stars in
the Tucana/Horologium and beta Pic associations, all ~ 10 to 35 Myrs young and
at ~10 to 60 pc distance. Such young nearby stars are well-suited for direct
imaging searches for brown dwarf and even planetary companions, because young
sub-stellar objects are still self-luminous due to contraction and accretion.
We performed our observations at the ESO 3.5m NTT with the normal infrared
imaging detector SofI and the MPE speckle camera Sharp-I. Three arc sec north
of GSC 8047-0232 in Horologium a promising brown dwarf companion candidate is
detected, which needs to be confirmed by proper motion and/or spectroscopy.
Several other faint companion candidates are already rejected by second epoch
imaging. Among 21 stars observed in Tucana/Horologium, there are not more than
one to five brown dwarf companions outside of 75 AU (1.5" at 50 pc); most
certainly only < 5 % of the Tuc/HorA stars have brown dwarf companions (13 to
78 Jupiter masses) outside of 75 AU. For the first time, we can report an upper
limit for the frequency of massive planets (~ 10 M_jup) at wide separations (~
100 AU) using a meaningfull and homogeneous sample: Of 11 stars observed
sufficiently deep in beta Pic (12 Myrs), not more than one has a massive planet
outside of ~ 100 AU, i.e. massive planets at large separations are rare (< 9
%).Comment: Astronomische Nachrichten, in pres
Front Propagation of Spatio-temporal Chaos
We study the dynamics of the front separating a spatio-temporally chaotic
region from a stable steady region using a simple model applicable to
periodically forced systems. In particular, we investigate both the coarsening
of the front induced by the inherent `noise' of the chaotic region, and the
long wavelength dynamics causing the front to develop cusps
Classical limit of transport in quantum kicked maps
We investigate the behavior of weak localization, conductance fluctuations,
and shot noise of a chaotic scatterer in the semiclassical limit. Time resolved
numerical results, obtained by truncating the time-evolution of a kicked
quantum map after a certain number of iterations, are compared to semiclassical
theory. Considering how the appearance of quantum effects is delayed as a
function of the Ehrenfest time gives a new method to compare theory and
numerical simulations. We find that both weak localization and shot noise agree
with semiclassical theory, which predicts exponential suppression with
increasing Ehrenfest time. However, conductance fluctuations exhibit different
behavior, with only a slight dependence on the Ehrenfest time.Comment: 17 pages, 13 figures. Final versio
Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior
In this paper a recently developed projector-based renormalization method
(PRM) for many-particle Hamiltonians is applied to the periodic Anderson model
(PAM) with the aim to describe heavy Fermion behavior. In this method
high-energetic excitation operators instead of high energetic states are
eliminated. We arrive at an effective Hamiltonian for a quasi-free system which
consists of two non-interacting heavy-quasiparticle bands. The resulting
renormalization equations for the parameters of the Hamiltonian are valid for
large as well as small degeneracy of the angular momentum. An expansion
in is avoided. Within an additional approximation which adapts the
idea of a fixed renormalized \textit{f} level , we obtain
coupled equations for and the averaged \textit{f}
occupation . These equations resemble to a certain extent those of the
usual slave boson mean-field (SB) treatment. In particular, for large
the results for the PRM and the SB approach agree perfectly whereas
considerable differences are found for small .Comment: 26 pages, 5 figures included, discussion of the DOS added in v2,
accepted for publication in Phys. Rev.
- …
