195 research outputs found

    Mapping nitrate leaching to upper groundwater in the sandy regions of The Netherlands, using conceptual knowledge

    Get PDF
    The European Community asks its Member States to provide a comprehensive and coherent overview of their groundwater chemical status. It is stated that simple conceptual models are necessary to allow assessments of the risks of failing to meet quality objectives. In The Netherlands two monitoring networks (one for agriculture and one for nature) are operational, providing results which can be used for an overview. Two regression models, based upon simple conceptual models, link measured nitrate concentrations to data from remote sensing images of land use, national forest inventory, national cattle inventory, fertiliser use statistics, atmospheric N deposition, soil maps and weather monitoring. The models are used to draw a nitrate leaching map and to estimate the size of the area exceeding the EU limit value in the early 1990s. The 95% confidence interval for the fraction nature and agricultural areas where the EU limit value for nitrate (50 mg/l) was exceeded amounted to 0.77–0.85 while the lower 97.5% confidence limit for the fraction agricultural area where the EU limit value was exceeded amounted to 0.94. Although the two conceptual models can be regarded as simple, the use of the models to give an overview was experienced as complex

    CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing

    Get PDF
    CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses

    Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    Get PDF
    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more α-hydroxy alprazolam (α-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both α-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of α-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of α-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action

    Deficient Liver Biosynthesis of Docosahexaenoic Acid Correlates with Cognitive Impairment in Alzheimer's Disease

    Get PDF
    Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer's disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer's disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer's disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P<0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer's disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer's disease patients, lessening the flux of this neuroprotective fatty acid to the brain

    Transgenic technologies to induce sterility

    Get PDF
    The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes

    Transgenic technologies to induce sterility

    Get PDF
    The last few years have witnessed a considerable expansion in the number of tools available to perform molecular and genetic studies on the genome of Anopheles mosquitoes, the vectors of human malaria. As a consequence, knowledge of aspects of the biology of mosquitoes, such as immunity, reproduction and behaviour, that are relevant to their ability to transmit disease is rapidly increasing, and could be translated into concrete benefits for malaria control strategies. Amongst the most important scientific advances, the development of transgenic technologies for Anopheles mosquitoes provides a crucial opportunity to improve current vector control measures or design novel ones. In particular, the use of genetic modification of the mosquito genome could provide for a more effective deployment of the sterile insect technique (SIT) against vector populations in the field. Currently, SIT relies on the release of radiation sterilized males, which compete with wild males for mating with wild females. The induction of sterility in males through the genetic manipulation of the mosquito genome, already achieved in a number of other insect species, could eliminate the need for radiation and increase the efficiency of SIT-based strategies. This paper provides an overview of the mechanisms already in use for inducing sterility by transgenesis in Drosophila and other insects, and speculates on possible ways to apply similar approaches to Anopheles mosquitoes

    Association of warfarin dose with genes involved in its action and metabolism

    Get PDF
    We report an extensive study of variability in genes encoding proteins that are believed to be involved in the action and biotransformation of warfarin. Warfarin is a commonly prescribed anticoagulant that is difficult to use because of the wide interindividual variation in dose requirements, the narrow therapeutic range and the risk of serious bleeding. We genotyped 201 patients for polymorphisms in 29 genes in the warfarin interactive pathways and tested them for association with dose requirement. In our study, polymorphisms in or flanking the genes VKORC1, CYP2C9, CYP2C18, CYP2C19, PROC, APOE, EPHX1, CALU, GGCX and ORM1-ORM2 and haplotypes of VKORC1, CYP2C9, CYP2C8, CYP2C19, PROC, F7, GGCX, PROZ, F9, NR1I2 and ORM1-ORM2 were associated with dose (P < 0.05). VKORC1, CYP2C9, CYP2C18 and CYP2C19 were significant after experiment-wise correction for multiple testing (P < 0.000175), however, the association of CYP2C18 and CYP2C19 was fully explained by linkage disequilibrium with CYP2C9*2 and/or *3. PROC and APOE were both significantly associated with dose after correction within each gene. A multiple regression model with VKORC1, CYP2C9, PROC and the non-genetic predictors age, bodyweight, drug interactions and indication for treatment jointly accounted for 62% of variance in warfarin dose. Weaker associations observed for other genes could explain up to ∼10% additional dose variance, but require testing and validation in an independent and larger data set. Translation of this knowledge into clinical guidelines for warfarin prescription will be likely to have a major impact on the safety and efficacy of warfarin. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00439-006-0260-8 and is accessible for authorized users

    Spatial Random Slope Multilevel Modeling Using Multivariate Conditional Autoregressive Models: A Case Study of Subjective Travel Satisfaction in Beijing

    Get PDF
    This article explores how to incorporate a spatial dependence effect into the standard multilevel modeling (MLM). The proposed method is particularly well suited to the analysis of geographically clustered survey data where individuals are nested in geographical areas. Drawing on multivariate conditional autoregressive models, we develop a spatial random slope MLM approach to account for the within-group dependence among individuals in the same area and the spatial dependence between areas simultaneously. Our approach improves on recent methodological advances in the integrated spatial and MLM literature, offering greater flexibility in terms of model specification by allowing regression coefficients to be spatially varied. Bayesian Markov chain Monte Carlo (MCMC) algorithms are derived to implement the proposed model. Using two-level travel satisfaction data in Beijing, we apply the proposed approach as well as the standard nonspatial random slope MLM to investigate subjective travel satisfaction of residents and its determinants. Model comparison results show strong evidence that the proposed method produces a significant improvement against a nonspatial random slope MLM. A fairly large spatial correlation parameter suggests strong spatial dependence in district-level random effects. Moreover, spatial patterns of district-level random effects of locational variables have been identified, with high and low values clustering together
    corecore