688 research outputs found

    The mass and radius of the M dwarf companion to GD 448

    Get PDF
    We present spectroscopy and photometry of GD 448, a detached white dwarf - M dwarf binary with a period of 2.47h. We find that the NaI 8200A feature is composed of narrow emission lines due to irradiation of the M dwarf by the white dwarf within broad absorption lines that are essentially unaffected by heating. Combined with an improved spectroscopic orbit and gravitational red shift measurement from spectra of the H-alpha line, we are able to derive masses for the white dwarf and M dwarf directly (0.41 +/- 0.01 solar masses and 0.096 +/- 0.004 solar masses, respectively). We use a simple model of the CaII emission lines to establish the radius of the M dwarf assuming the emission from its surface to be proportional to the incident flux per unit area from the white dwarf. The radius derived is 0.125 +/- 0.020 solar radii. The M dwarf appears to be a normal main-sequence star in terms of its mass and radius and is less than half the size of its Roche lobe. The thermal timescale of the M dwarf is much longer than the cooling age of the white dwarf so we conclude that the M dwarf was unaffected by the common-envelope phase. The anomalous width of the H-alpha emission from the M dwarf remains to be explained, but the strengh of the line may be due to X-ray heating of the M dwarf due to accretion onto the white dwarf from the M dwarf wind.Comment: 8 pages, 8 figure

    Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. II. 2MASS J 17072343-0558249AB

    Get PDF
    We present IRTF SpeX observations of the M/L binary system 2MASS J17072343-0558249. SpeX imaging resolves the system into a 1"01+/-0.17 visual binary in which both components have red near infrared colors. Resolved low-resolution (R~150) 0.8-2.5 micron spectroscopy reveals strong H2O, CO and FeH bands and alkali lines in the spectra of both components, characteristic of late-type M and L dwarfs. A comparison to a sample of late-type field dwarf spectra indicates spectral types M9 and L3. Despite the small proper motion of the system (0"100+/-0"009 yr^{-1}), imaging observations over 2.5 yr provide strong evidence that the two components share common proper motion. Physical association is also likely due to the small spatial volume occupied by the two components (based on spectrophotometric distances estimates of 15+/-1 pc) as compared to the relatively low spatial density of low mass field stars. The projected separation of the system is 15+/-3 AU, similar to other late-type M and L binaries. Assuming a system age of 0.5-5 Gyr, we estimate the masses of the binary components to be 0.072-0.083 and 0.064-0.077 M_sun, with an orbital period of roughly 150-300 yr. While this is nominally too long a baseline for astrometric mass measurements, the proximity and relatively wide angular separation of the 2MASS J1707-0558AB pair makes it an ideal system for studying the M dwarf/L dwarf transition at a fixed age and metallicity

    Revealing the Nature of Algol Disks through Optical and UV Spectroscopy, Synthetic Spectra, and Tomography of TT Hydrae

    Get PDF
    We have developed a systematic procedure to study the disks in Algol-type binaries using spectroscopic analysis, synthetic spectra, and tomography. We analyzed 119 H-alpha spectra of TT Hya, an Algol-type eclipsing interacting binary, collected from 1985-2001. The new radial velocities enabled us to derive reliable orbital elements, including a small non-zero eccentricity, and to improve the accuracy of the absolute dimensions of the system. High resolution IUE spectra were also analyzed to study the formation of the ultraviolet lines and continuum. Synthetic spectra of the iron curtain using our new shellspec program enabled us to derive a characteristic disk temperature of 7000K. We have demonstrated that the UV emission lines seen during total primary eclipse cannot originate from the accretion disk, but most likely arise from a hotter disk-stream interaction region. The synthetic spectra of the stars, disk, and stream allowed us to derive a lower limit to the mass transfer rate of 2e-10 solar masses per year. Doppler tomography of the observed H-alpha profiles revealed a distinct accretion disk. The difference spectra produced by subtracting the synthetic spectra of the stars resulted in an image of the disk, which virtually disappeared once the composite synthetic spectra of the stars and disk were used to calculate the difference spectra. An intensity enhancement of the resulting tomogram revealed images of the gas stream and an emission arc. We successfully modeled the gas stream using shellspec and associated the emission arc with an asymmetry in the accretion disk.Comment: 46 pages, 15 figures, 6 tables, accepted by Ap

    A Hubble Space Telescope ACS Search for Brown Dwarf Binaries in the Pleiades Open Cluster

    Get PDF
    We present the results of a high-resolution imaging survey for brown dwarf binaries in the Pleiades open cluster. The observations were carried out with the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample consists of 15 bona-fide brown dwarfs. We confirm 2 binaries and detect their orbital motion, but we did not resolve any new binary candidates in the separation range between 5.4AU and 1700AU and masses in the range 0.035--0.065~Msun. Together with the results of our previous study (Martin et al., 2003), we can derive a visual binary frequency of 13.34.3+13.7^{+13.7}_{-4.3}\% for separations greater than 7~AU masses between 0.055--0.065~M_{\sun} and mass ratios between 0.45--0.9<q<<q<1.0. The other observed properties of Pleiades brown dwarf binaries (distributions of separation and mass ratio) appear to be similar to their older counterparts in the field.Comment: 29 pages, 7 figures, 6 tables, accepted for publication in Ap

    Substellar companions and the formation of hot subdwarf stars

    Get PDF
    "Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics."We give a brief review over the observational evidence for close substellar companions to hot subdwarf stars. The formation of these core helium-burning objects requires huge mass loss of their red giant progenitors. It has been suggested that besides stellar companions substellar objects in close orbits may be able to trigger this mass loss. Such objects can be easily detected around hot subdwarf stars by medium or high resolution spectroscopy with an RV accuracy at the km s(-1)-level. Eclipsing systems of Vir type stick out of transit surveys because of their characteristic light curves. The best evidence that substellar objects in close orbits around sdBs exist and that they are able to trigger the required mass loss is provided by the eclipsing system SDSS J0820+0008, which was found in the course of the MUCHFUSS project. Furthermore, several candidate systems have been discovered.Final Accepted Versio

    The first WASP public data release

    Get PDF
    The WASP (wide angle search for planets) project is an exoplanet transit survey that has been automatically taking wide field images since 2004. Two instruments, one in La Palma and the other in South Africa, continually monitor the night sky, building up light curves of millions of unique objects. These light curves are used to search for the characteristics of exoplanetary transits. This first public data release (DR1) of the WASP archive makes available all the light curve data and images from 2004 up to 2008 in both the Northern and Southern hemispheres. A web interface () to the data allows easy access over the Internet. The data set contains 3 631 972 raw images and 17 970 937 light curves. In total the light curves have 119 930 299 362 data points available between them

    Ages for exoplanet host stars

    Full text link
    Age is an important characteristic of a planetary system, but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018

    The CHEOPS mission

    Get PDF
    The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9R(circle dot)) in the magnitude range 6 <= V <= 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7R(circle dot)) of magnitude in the range 9 <= V <= 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chretien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA's Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme
    corecore