We present IRTF SpeX observations of the M/L binary system 2MASS
J17072343-0558249. SpeX imaging resolves the system into a 1"01+/-0.17 visual
binary in which both components have red near infrared colors. Resolved
low-resolution (R~150) 0.8-2.5 micron spectroscopy reveals strong H2O, CO and
FeH bands and alkali lines in the spectra of both components, characteristic of
late-type M and L dwarfs. A comparison to a sample of late-type field dwarf
spectra indicates spectral types M9 and L3. Despite the small proper motion of
the system (0"100+/-0"009 yr^{-1}), imaging observations over 2.5 yr provide
strong evidence that the two components share common proper motion. Physical
association is also likely due to the small spatial volume occupied by the two
components (based on spectrophotometric distances estimates of 15+/-1 pc) as
compared to the relatively low spatial density of low mass field stars. The
projected separation of the system is 15+/-3 AU, similar to other late-type M
and L binaries. Assuming a system age of 0.5-5 Gyr, we estimate the masses of
the binary components to be 0.072-0.083 and 0.064-0.077 M_sun, with an orbital
period of roughly 150-300 yr. While this is nominally too long a baseline for
astrometric mass measurements, the proximity and relatively wide angular
separation of the 2MASS J1707-0558AB pair makes it an ideal system for studying
the M dwarf/L dwarf transition at a fixed age and metallicity