917 research outputs found
Non-deterministic Boolean Proof Nets
16 pagesInternational audienceWe introduce Non-deterministic Boolean proof nets to study the correspondence with Boolean circuits, a parallel model of computation. We extend the cut elimination of Non-deterministic Multiplicative Linear logic to a parallel procedure in proof nets. With the restriction of proof nets to Boolean types, we prove that the cut-elimination procedure corresponds to Non-deterministic Boolean circuit evaluation and reciprocally. We obtain implicit characterization of the complexity classes NP and NC (the efficiently parallelizable functions)
A conceptual exoskeleton shoulder design for the assistance of upper limb movement
© Springer International Publishing AG, part of Springer Nature 2018. There is an increased interest on wearable technologies for rehabilitation and human augmentation. Systems focusing on the upper limbs are attempting to replicate the musculoskeletal structures found in humans, reproducing existing behaviors and capabilities. The current work is expanding on existing systems with a novel design that ensures the maximum range of motion while at the same time allowing for lockable features ensuring higher manipulation payloads at minimum energy and fatigue costs. An analysis of the biomechanics of the shoulder is being done and a detailed system design for structural as well actuation elements of a parallel mechanism is given. The benefits for the use are discussed of reduced weight, maximum range of motion at minimum energy cost
PIONIER: a visitor instrument for the VLTI
PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its
first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD
integrated optics combiner that can also be used in scanning mode. It provides
low spectral resolution in H and K band. PIONIER is designed for imaging with a
specific emphasis on fast fringe recording to allow closure-phases and
visibilities to be precisely measured. In this work we provide the detailed
description of the instrument and present its updated status.Comment: Proceedings of SPIE conference Optical and Infrared Interferometry II
(Conference 7734) San Diego 201
ImageParser: a tool for finite element generation from three-dimensional medical images
BACKGROUND: The finite element method (FEM) is a powerful mathematical tool to simulate and visualize the mechanical deformation of tissues and organs during medical examinations or interventions. It is yet a challenge to build up an FEM mesh directly from a volumetric image partially because the regions (or structures) of interest (ROIs) may be irregular and fuzzy. METHODS: A software package, ImageParser, is developed to generate an FEM mesh from 3-D tomographic medical images. This software uses a semi-automatic method to detect ROIs from the context of image including neighboring tissues and organs, completes segmentation of different tissues, and meshes the organ into elements. RESULTS: The ImageParser is shown to build up an FEM model for simulating the mechanical responses of the breast based on 3-D CT images. The breast is compressed by two plate paddles under an overall displacement as large as 20% of the initial distance between the paddles. The strain and tangential Young's modulus distributions are specified for the biomechanical analysis of breast tissues. CONCLUSION: The ImageParser can successfully exact the geometry of ROIs from a complex medical image and generate the FEM mesh with customer-defined segmentation information
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
Drivers of the relative richness of naturalized and invasive plant species on Earth
Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (~50 % of the explained variation) than RRN (~40 %). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have ~6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 % of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response
An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress–strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics
Strain-engineering of the charge and spin-orbital interactions in Sr2IrO4
In the high spin-orbit coupled Sr2IrO4, the high sensitivity of the ground
state to the details of the local lattice structure shows a large potential for
the manipulation of the functional properties by inducing local lattice
distortions. We use epitaxial strain to modify the Ir-O bond geometry in
Sr2IrO4 and perform momentum-dependent Resonant Inelastic X-ray Scattering
(RIXS) at the metal and at the ligand sites to unveil the response of the low
energy elementary excitations. We observe that the pseudospin-wave dispersion
for tensile-strained Sr2IrO4 films displays large softening along the [h,0]
direction, while along the [h,h] direction it shows hardening. This evolution
reveals a renormalization of the magnetic interactions caused by a
strain-driven crossover from anisotropic to isotropic interactions between the
magnetic moments. Moreover, we detect dispersive electron-hole pair excitations
which shift to lower (higher) energies upon compressive (tensile) strain,
manifesting a reduction (increase) in the size of the charge gap. This behavior
shows an intimate coupling between charge excitations and lattice distortions
in Sr2IrO4, originating from the modified hopping elements between the t2g
orbitals. Our work highlights the central role played by the lattice degrees of
freedom in determining both the pseudospin and charge excitations of Sr2IrO4
and provides valuable information towards the control of the ground state of
complex oxides in the presence of high spin-orbit coupling.Comment: Published in Proceedings of the National Academy of Sciences,
September 202
The density-matrix renormalization group
The density-matrix renormalization group (DMRG) is a numerical algorithm for
the efficient truncation of the Hilbert space of low-dimensional strongly
correlated quantum systems based on a rather general decimation prescription.
This algorithm has achieved unprecedented precision in the description of
one-dimensional quantum systems. It has therefore quickly acquired the status
of method of choice for numerical studies of one-dimensional quantum systems.
Its applications to the calculation of static, dynamic and thermodynamic
quantities in such systems are reviewed. The potential of DMRG applications in
the fields of two-dimensional quantum systems, quantum chemistry,
three-dimensional small grains, nuclear physics, equilibrium and
non-equilibrium statistical physics, and time-dependent phenomena is discussed.
This review also considers the theoretical foundations of the method, examining
its relationship to matrix-product states and the quantum information content
of the density matrices generated by DMRG.Comment: accepted by Rev. Mod. Phys. in July 2004; scheduled to appear in the
January 2005 issu
- …