379 research outputs found

    First evidence of a strong Magneto-capacitance coupling at room temperature in integrated piezoelectric resonators

    Full text link
    In the vicinity of their resonance frequency, piezoelectric resonators are highly sensitive to small perturbations. The present report is focussed on the magnetic field as a perturbation source. First, magneto-dielectric modulation of more than 10% is achieved at room temperature on both ferroelectric single crystals and quartz discs. Since such piezoelectric resonators are now available as membranes directly integrated on Silicon wafer, we have checked the magneto-dielectric modulation in such resonators. We show here for the first time that a moderate magnetic field of 2.104 Oersteds is able to efficiently tune the impedance of these resonators in their resonance window.Comment: 11 Pages, 4 figure

    Resistive hystersis effects in perovskite oxide-based heterostructure junctions

    Full text link
    In this paper, we report the electrical and structural properties of the oxide-based metal/ferroelectric/metal (MFM) junctions. The heterostructures are composed of ultrathin layers of La0.7Ca0.3MnO3 (LCMO) as a metallic layer and, BaTiO3 (BTO) as a ferroelectric layer. Junction based devices, having the dimensions of 400 x 200 micom2, have been fabricated upon LCMO/BTO/LCMO heterostructures by photolithography and Ar-ion milling technique. The DC current-voltage (I-V) characteristics of the MFM junctions were carried out. At 300 K, the devices showed the linear (I-V) characteristics, whereas at 77 K, (I-V) curves exhibited some reproducible switching behaviours with well-defined remnant currents. The resulting resistance modulation is very different from what was already reported in ultrathin ferroelectric layers displaying resistive switching. A model is presented to explain the datasComment: To be publised in Applied Physics Letter

    Taking care of systemic sclerosis patients during COVID-19 pandemic : rethink the clinical activity

    Get PDF
    COVID-19 outbreak has quickly spread worldwide, causing a high pressure on the health-care system. In Italy, from March 8, 2020, all the deferrable clinical activities have been suspended to increase the health care offer for COVID-19 patients. The hospital organization has been modified also in order to assure non-COVID-19 patients assistance. The Scleroderma Unit of ASST Pini-CTO Hospital, in Milan, in the region mostly hit by SARS-CoV-2 in Italy, follows more than 600 patients affected by systemic sclerosis (SSc). Patients with SSc need a close follow-up with a regular screening of organ involvement and frequent intravenous treatments. All SSc patients have been educated about ministerial directives to limit COVID-19 spread. The organization of our Scleroderma Unit has been quickly rethought to assure SSc patients assistance in safety for them and for health-care workers during urgent visits or infusion therapies. Using electronic way of communication with frequent virtual contact and guarantying home deliveries of some therapies, we allowed a continuity of care also outside the Hospital

    STM tunneling spectroscopic studies of YNdxBa2−xCu3O7−δ thin films

    Get PDF
    We performed tunneling spectroscopy on high quality superconducting YNdxBa2-xCu3O7-delta thin films using a low-temperature scanning tunneling microscope. Superconducting regions show very well-defined gap structures. Disorder introduced by Nd substitution at the Ba site dramatically affects locally the quasiparticle density of states. The measurements show that the impurities induce surface resonant states at energies very close to the Fermi energy, typical of a d-wave superconductor

    Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method

    Get PDF
    The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure

    Numerical simulation of the internal plasma dynamics of post-flare loops

    Full text link
    We integrate the MHD ideal equations of a slender flux tube to simulate the internal plasma dynamics of coronal post-flare loops. We study the onset and evolution of the internal plasma instability to compare with observations and to gain insight into physical processes and characteristic parameters associated with flaring events. The numerical approach uses a finite-volume Harten-Yee TVD scheme to integrate the 1D1/2 MHD equations specially designed to capture supersonic flow discontinuities. We could reproduce the observational sliding down and upwardly propagating of brightening features along magnetic threads of an event occurred on October 1st, 2001. We show that high--speed downflow perturbations, usually interpreted as slow magnetoacoustic waves, could be better interpreted as slow magnetoacoustic shock waves. This result was obtained considering adiabaticity in the energy balance equation. However, a time--dependent forcing from the basis is needed to reproduce the reiteration of the event which resembles observational patterns -commonly known as quasi--periodic pulsations (QPPs)- which are related with large scale characteristic longitudes of coherence. This result reinforces the interpretation that the QPPs are a response to the pulsational flaring activity.Comment: Accepted MNRAS, 10 pages, 14 figures, 1 tabl

    Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

    Get PDF
    Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed both assuming polarization parameters are completely unknown and that they are known with some uncertainty, as derived from X-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of two below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.publishedVersionFil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Quiroga, G. Argentinian Gravitational Wave Group; Argentina.Fil: Reula, O. Argentinian Gravitational Wave Group; Argentina.Fil: Dominguez, E. Argentinian Gravitational Wave Group; Argentina.Fil: Ortega, W. Argentinian Gravitational Wave Group; Argentina.Fil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de América.Física de Partículas y Campo

    Inference for variograms

    Get PDF
    The empirical variogram is a standard tool in the investigation and modelling of spatial covariance. However, its properties can be difficult to identify and exploit in the context of exploring the characteristics of individual datasets. This is particularly true when seeking to move beyond description towards inferential statements about the structure of the spatial covariance which may be present. A robust form of empirical variogram based on a fourth-root transformation is used. This takes advantage of the normal approximation which gives an excellent description of the variation exhibited on this scale. Calculations of mean, variance and covariance of the binned empirical variogram then allow useful computations such as confidence intervals to be added to the underlying estimator. The comparison of variograms for different datasets provides an illustration of this. The suitability of simplifying assumptions such as isotropy and stationarity can then also be investigated through the construction of appropriate test statistics and the distributional calculations required in the associated p-values can be performed through quadratic form methods. Examples of the use of these methods in assessing the form of spatial covariance present in datasets are shown, both through hypothesis tests and in graphical form. A simulation study explores the properties of the tests while pollution data on mosses in Galicia (North-West Spain) are used to provide a real data illustration

    Relativistic Hartree-Bogoliubov description of the deformed ground-state proton emitters

    Get PDF
    Ground-state properties of deformed proton-rich odd-Z nuclei in the region 59Z6959 \leq Z \leq 69 are described in the framework of Relativistic Hartree Bogoliubov (RHB) theory. One-proton separation energies and ground-state quadrupole deformations that result from fully self-consistent microscopic calculations are compared with available experimental data. The model predicts the location of the proton drip-line, the properties of proton emitters beyond the drip-line, and provides information about the deformed single-particle orbitals occupied by the odd valence proton.Comment: 9 pages, RevTeX, 3 PS figures, submitted Phys. Rev. Letter

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
    corecore