120 research outputs found

    Public Broadcasting: A Medium in Search of Solutions

    Get PDF
    Simulation based methods used to estimate uncertainties in models have recently gained much interest. We study the bootstrap and how this method could be used in system identification related problems. The main contribution is a proposed algorithm to estimate the probability density function in case of undermodeling. We illustrate the performance of the bootstrap resampling method by simulation examples, which are in good agreement with Monte Carlo simulations

    Public Broadcasting: A Medium in Search of Solutions

    Get PDF

    Crust-core interactions and the magnetic dipole orientation in neutron stars

    Get PDF
    We develop an effective model for a neutron star with a magnetosphere. It takes into account the electromagnetic torques acting on the magnetic dipole, the friction forces between the crust and the core, and the gravitational corrections. Anomalous electromagnetic torques, usually neglected in a rigid star model, play here a crucial role for the alignement of the magnetic dipole. The crust-core coupling time implied by the model is consistent with the observational data and other theoretical estimations. This model describes the main features of the behavior of the magnetic dipole during the life of the star, and in particular gives a natural explanation for the n<3 value of the breaking index in a young neutron star.Comment: 23 pages, 1 figur

    Communication Research

    Get PDF
    Contains reports on seven research projects.Carnegie Foundatio

    Communication Research

    Get PDF
    Contains reports on eight research projects.Bell Telephone Laboratories, IncorporatedCarnegie FoundationRockefeller FoundationOffice of Naval Researc

    The Galactic Center with Roman

    Full text link
    We advocate for a Galactic center (GC) field to be added to the Galactic Bulge Time Domain Survey (GBTDS). The new field would yield high-cadence photometric and astrometric measurements of an unprecedented ∼{\sim}3.3 million stars toward the GC. This would enable a wide range of science cases, such as finding star-compact object binaries that may ultimately merge as LISA-detectable gravitational wave sources, constraining the mass function of stars and compact objects in different environments, detecting populations of microlensing and transiting exoplanets, studying stellar flares and variability in young and old stars, and monitoring accretion onto the central supermassive black hole. In addition, high-precision proper motions and parallaxes would open a new window into the large-scale dynamics of stellar populations at the GC, yielding insights into the formation and evolution of galactic nuclei and their co-evolution with the growth of the supermassive black hole. We discuss the possible trade-offs between the notional GBTDS and the addition of a GC field with either an optimal or minimal cadence. Ultimately, the addition of a GC field to the GBTDS would dramatically increase the science return of Roman and provide a legacy dataset to study the mid-plane and innermost regions of our Galaxy.Comment: 19 pages, 3 figures. Submitted to the NASA Roman Core Community Surveys White Paper Cal

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe
    • …
    corecore