1,189 research outputs found
DERIVATION AND OPTIMIZATION OF A STOCHASTIC LIVESTOCK WEIGHT GAIN RESPONSE TO STOCKING DENSITY MODEL
Dual-purpose winter wheat production is an important economic enterprise in the southern Great Plains of the United States. Because of the complex interactions involved in producing wheat grain and beef gain from a single crop, stocking density is an important decision. The objective of the research is to determine the stocking density that maximizes expected net returns from dual-purpose winter wheat production. Statistical tests rejected a conventional linear-response plateau function in favor of a linear-response stochastic plateau function. The optimal stocking density of 1.48 steers per hectare (0.60 steers per acre) is 19% greater with a stochastic plateau than with a nonstochastic one.Livestock Production/Industries,
Mass and Angular Momentum Transfer in the Massive Algol Binary RY Persei
We present an investigation of H-alpha emission line variations observed in
the massive Algol binary, RY Per. We give new radial velocity data for the
secondary based upon our optical spectra and for the primary based upon high
dispersion UV spectra. We present revised orbital elements and an estimate of
the primary's projected rotational velocity (which indicates that the primary
is rotating 7 times faster than synchronous). We use a Doppler tomography
algorithm to reconstruct the individual primary and secondary spectra in the
region of H-alpha, and we subtract the latter from each of our observations to
obtain profiles of the primary and its disk alone. Our H-alpha observations of
RY Per show that the mass gaining primary is surrounded by a persistent but
time variable accretion disk. The profile that is observed outside-of-eclipse
has weak, double-peaked emission flanking a deep central absorption, and we
find that these properties can be reproduced by a disk model that includes the
absorption of photospheric light by the band of the disk seen in projection
against the face of the star. We developed a new method to reconstruct the disk
surface density distribution from the ensemble of H-alpha profiles observed
around the orbit, and this method accounts for the effects of disk occultation
by the stellar components, the obscuration of the primary by the disk, and flux
contributions from optically thick disk elements. The resulting surface density
distribution is elongated along the axis joining the stars, in the same way as
seen in hydrodynamical simulations of gas flows that strike the mass gainer
near trailing edge of the star. This type of gas stream configuration is
optimal for the transfer of angular momentum, and we show that rapid rotation
is found in other Algols that have passed through a similar stage.Comment: 39 pages, 12 figures, ApJ in press, 2004 June 20 issu
Volume 17. Article 1. Oceanography of Long Island Sound.
https://elischolar.library.yale.edu/bulletin_yale_bingham_oceanographic_collection/1157/thumbnail.jp
Tomographic Separation of Composite Spectra. VIII. The Physical Properties of the Massive Compact Binary in the Triple Star System HD 36486 (delta Orionis A)
Double-lined spectroscopic orbital elements have recently been found for the
central binary in the massive triple, delta Orionis A based on radial
velocities from cross-correlation techniques applied to IUE high dispersion
spectra and He I 6678 spectra obtained at Kitt Peak. The primary and secondary
velocity amplitudes were found to be 94.9 +/- 0.6 km/s and 186 +/- 9 km/s
respectively. Tomographic reconstructions of the primary and secondary stars'
spectra confirm the O9.5 II classification of the primary and indicate a B0.5
III type for the secondary. The widths of the UV cross-correlation functions
are used to estimate the projected rotational velocities, Vsin i = 157 +/- 6
km/s and 138 +/- 16 km/s for the primary and secondary, respectively implying
that both stars rotate faster than their orbital motion. We used the
spectroscopic results to make a constrained fit of the Hipparcos light curve of
this eclipsing binary, and the model fits limit the inclination to the range
between 67 and 77 degrees. The i = 67 degrees solution, which corresponds to a
near Roche-filling configuration, results in a primary mass of 11.2 solar
masses and a secondary mass of 5.6 solar masses, both of which are
substantially below the expected masses for stars of their luminosity. This
binary may have experienced a mass ratio reversal caused by Case A Roche lobe
overflow, or the system may have suffered extensive mass loss through a binary
interaction, perhaps during a common envelope phase, in which most of the
primary's mass was lost from the system rather than transferred to the
secondary.Comment: 27 pages, 15 figures in press, the Astrophysical Journal, February 1,
200
Binary and Multiple O-Type Stars in the Cas OB6 Association
We present the results of time-resolved spectroscopy of 13 O-type stars in
the Cas OB6 stellar association. We conducted a survey for radial velocity
variability in search of binary systems, which are expected to be plentiful in
young OB associations. Here we report the discovery of two new single-lined
binaries, and we present new orbital elements for three double-lined binaries
(including one in the multiple star system HD 17505). One of the double-lined
systems is the eclipsing binary system DN Cas, and we present a preliminary
light curve analysis that yields the system inclination, masses, and radii. We
compare the spectra of the single stars and the individual components of the
binary stars with model synthetic spectra to estimate the stellar effective
temperatures, gravities, and projected rotational velocities. We also make fits
of the spectral energy distributions to derive E(B-V), R=A_V/E(B-V), and
angular diameter. A distance of 1.9 kpc yields radii that are consistent with
evolutionary models. We find that 7 of 14 systems with spectroscopic data are
probable binaries, consistent with the high binary frequency found for other
massive stars in clusters and associations.Comment: 40 pages, ApJ, in pres
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
- …