332 research outputs found

    Hydrogen tunneling in the perovskite ionic conductor BaCe(1-x)Y(x)O(3-d)

    Full text link
    We present low-temperature anelastic and dielectric spectroscopy measurements on the perovskite ionic conductor BaCe(1-x)Y(x)O(3-x/2) in the protonated, deuterated and outgassed states. Three main relaxation processes are ascribed to proton migration, reorientation about an Y dopant and tunneling around a same O atom. An additional relaxation maximum appears only in the dielectric spectrum around 60 K, and does not involve H motion, but may be of electronic origin, e.g. small polaron hopping. The peak at the lowest temperature, assigned to H tunneling, has been fitted with a relaxation rate presenting crossovers from one-phonon transitions, nearly independent of temperature, to two-phonon processes, varying as T^7, to Arrhenius-like. Substituting H with D lowers the overall rate by 8 times. The corresponding peak in the dielectric loss has an intensity nearly 40 times smaller than expected from the classical reorientation of the electric dipole associated with the OH complex. This fact is discussed in terms of coherent tunneling states of H in a cubic and orthorhombically distorted lattice, possibly indicating that only H in the symmetric regions of twin boundaries exhibit tunneling, and in terms of reduction of the effective dipole due to lattice polarization.Comment: submitted to Phys. Rev.

    Hydrogen Dynamics in Superprotonic CsHSO4

    Full text link
    We present a detailed study of proton dynamics in the hydrogen-bonded superprotonic conductor CsHSO4 from first-principles molecular dynamics simulations, isolating the subtle interplay between the dynamics of the O--H chemical bonds, the O...H hydrogen bonds, and the SO4 tetrahedra in promoting proton diffusion. We find that the Grotthus mechanism of proton transport is primarily responsible for the dynamics of the chemical bonds, whereas the reorganization of the hydrogen-bond network is dominated by rapid angular hops in concert with small reorientations of the SO4 tetrahedra. Frequent proton jumping across the O--H...O complex is countered by a high rate of jump reversal, which we show is connected to the dynamics of the SO4 tetrahedra, resulting in a diminished CsHSO4/CsDSO4 isotope effect. We also find evidence of multiple timescales for SO4 reorientation events, leading to distinct diffusion mechanisms along the different crystal lattice directions. Finally, we employ graph-theoretic techniques to characterize the topology of the hydrogen-bond network and demonstrate a clear relationship between certain connectivity configurations and the likelihood for diffusive jump events.Comment: 12 pages, 10 figure

    Electronic transport calculations for rough interfaces in Al, Cu, Ag, and Au

    Full text link
    We present results of electronic structure and transport calculations for metallic interfaces, based on density functional theory and the non-equilibrium Green's functions method. Starting from the electronic structure of smooth Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies and metallic impurities.Comment: 15 pages, 10 figure

    Inclusive dielectron production in proton-proton collisions at 2.2 GeV beam energy

    Get PDF
    Data on inclusive dielectron production are presented for the reaction p+p at 2.2 GeV measured with the High Acceptance DiElectron Spectrometer (HADES). Our results supplement data obtained earlier in this bombarding energy regime by DLS and HADES. The comparison with the 2.09 GeV DLS data is discussed. The reconstructed e+e- distributions are confronted with simulated pair cocktails, revealing an excess yield at invariant masses around 0.5 GeV/c2. Inclusive cross sections of neutral pion and eta production are obtained

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    Study of dielectron production in C+C collisions at 1 AGeV

    Full text link
    The emission of e+e- pairs from C+C collisions at an incident energy of 1 GeV per nucleon has been investigated. The measured production probabilities, spanning from the pi0-Dalitz to the rho/omega! invariant-mass region, display a strong excess above the cocktail of standard hadronic sources. The bombarding-energy dependence of this excess is found to scale like pion production, rather than like eta production. The data are in good agreement with results obtained in the former DLS experiment.Comment: submitted to Physics Letters

    Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chinese Science Bulletin 56 (2011): 2828-2838, doi:10.1007/s11434-011-4619-4.During January–May in 2007, the Chinese research cruise DY115-19 discovered an active hydrothermal field at 49°39′E/37°47′S on the ultraslow spreading Southwest Indian Ridge (SWIR). This was also the first active hydrothermal field found along an ultraslow-spreading ridge. We analyzed mineralogical, textural and geochemical compositions of the sulfide chimneys obtained from the 49°39′E field. Chimney samples show a concentric mineral zone around the fluid channel. The mineral assemblages of the interiors consist mainly of chalcopyrite, with pyrite and sphalerite as minor constitunets. In the intermediate portion, pyrite becomes the dominant mineral, with chalcopyrite and sphalerite as minor constitunets. For the outer wall, the majority of minerals are pyrite and sphalerite, with few chalcopyrite. Towards the outer margin of the chimney wall, the mineral grains become small and irregular in shape gradually, while minerals within interstices are abundant. These features are similar to those chimney edifices found on the East Pacific Rise and Mid-Atlantic Ridge. The average contents of Cu, Fe and Zn in our chimney samples were 2.83 wt%, 45.6 wt% and 3.28 wt%, respectively. The average Au and Ag contents were up to 2.0 ppm and 70.2 ppm respectively, higher than the massive sulfides from most hydrothermal fields along mid-ocean ridge. The rare earth elements geochemistry of the sulfide chimneys show a pattern distinctive from the sulfides recovered from typical hydrothermal fields along sediment-starved mid-ocean ridge, with the enrichment of light rare earth elements but the weak, mostly negative, Eu anomaly. This is attributed to the distinct mineralization environment or fluid compositions in this area.This work was supported by the China Ocean Mineral Resources Research and Development Association Program (DY115- 02-1-01) and the State Oceanic Administration Youth Science Fund (2010318)

    Palomar Observatory Hale Telescope : Prime Focus Nebular Spectrograph Log Book

    Get PDF
    The Prime Focus Nebular Spectrograph was used at the Hale Telescope from June 1950 to June 1973 -- a span of 33 years -- by which time it was supplanted by Cassegrain spectrographs equipped with image intensifiers. In 1981, the instrument (without the two semi-solid Bowen-Schmidt cameras) was given on a long-term loan to the Jet Propulsion Laboratory for use at the Table Mountain Observatory. This book consists of copies of the observing log in which the exposures were recorded. The two original log books have been deposited in the Caltech Archive

    Thermodynamic Selection of Steric Zipper Patterns in the Amyloid Cross-β Spine

    Get PDF
    At the core of amyloid fibrils is the cross-β spine, a long tape of β-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a β-sheet bilayer with side chains within the bilayer forming a tightly interdigitating “steric zipper” interface. However, for a given peptide, different bilayer patterns are possible, and no quantitative explanation exists regarding which pattern is selected or under what condition there can be more than one pattern observed, exhibiting molecular polymorphism. We address the structural selection mechanism by performing molecular dynamics simulations to calculate the free energy of incorporating a peptide monomer into a β-sheet bilayer. We test filaments formed by several types of peptides including GNNQQNY, NNQQ, VEALYL, KLVFFAE and STVIIE, and find that the patterns with the lowest binding free energy correspond to available atomistic structures with high accuracy. Molecular polymorphism, as exhibited by NNQQ, is likely because there are more than one most stable structures whose binding free energies differ by less than the thermal energy. Detailed analysis of individual energy terms reveals that these short peptides are not strained nor do they lose much conformational entropy upon incorporating into a β-sheet bilayer. The selection of a bilayer pattern is determined mainly by the van der Waals and hydrophobic forces as a quantitative measure of shape complementarity among side chains between the β-sheets. The requirement for self-complementary steric zipper formation supports that amyloid fibrils form more easily among similar or same sequences, and it also makes parallel β-sheets generally preferred over anti-parallel ones. But the presence of charged side chains appears to kinetically drive anti-parallel β-sheets to form at early stages of assembly, after which the bilayer formation is likely driven by energetics
    corecore