39,104 research outputs found

    Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy

    Get PDF
    Primary crystallization and decomposition in the bulk amorphous alloy Ar41.2Ti13.8Cu12.5Ni10Be22.5 have been studied by small angle neutron scattering (SANS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). SANS data of samples annealed isothermally at 623 K exhibit an interference peak centered at q=0.46 nm(^-1) after an incubation time of about 100 min. TEM and DSC investigations confirm that the respective periodic variation in the scattering length density is due to the formation of nanocrystals embedded in the amorphous matrix. These observations suggest that during the incubation time a chemical decomposition process occurs and the related periodic composition fluctuations give rise to the observed periodic arrangement of the nanocrystals

    Pressure and isotope effect on the anisotropy of MgB2_{2}

    Full text link
    We analyze the data for the pressure and boron isotope effect on the temperature dependence of the magnetization near TcT_{c}. Invoking the universal scaling relation for the magnetization at fixed magnetic field it is shown that the relative shift of TcT_{c}, induced by pressure or boron isotope exchange, mirrors essentially that of the anisotropy. This uncovers a novel generic property of anisotropic type II superconductors, inexistent in the isotropic case. For MgB2_{2} it implies that the renormalization of the Fermi surface topology due to pressure or isotope exchange is dominated by a mechanism controlling the anisotropy.Comment: 7 pages, 3 figure

    Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy

    Get PDF
    We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 °C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 °C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample

    Decomposition and primary crystallization in undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts

    Get PDF
    Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glasses were prepared by cooling the melt with a rate of about 10 K/s and investigated with respect to their chemical and structural homogeneity by atom probe field ion microscopy and transmission electron microscopy. The measurements on these slowly cooled samples reveal that the alloy exhibits phase separation in the undercooled liquid state. Significant composition fluctuations are found in the Be and Zr concentration but not in the Ti, Cu, and Ni concentration. The decomposed microstructure is compared with the microstructure obtained upon primary crystallization, suggesting that the nucleation during primary crystallization of this bulk glass former is triggered by the preceding diffusion controlled decomposition in the undercooled liquid state

    Entry corridor definition and SM/RCS deorbit requirements for Apollo block 1 earth orbit missions. Project Apollo

    Get PDF
    Entry corridor definition and SM reaction control system for Apollo Block 1 earth orbit mission

    A conceptual framework and protocol for defining clinical decision support objectives applicable to medical specialties.

    Get PDF
    BackgroundThe U.S. Centers for Medicare and Medicaid Services established the Electronic Health Record (EHR) Incentive Program in 2009 to stimulate the adoption of EHRs. One component of the program requires eligible providers to implement clinical decision support (CDS) interventions that can improve performance on one or more quality measures pre-selected for each specialty. Because the unique decision-making challenges and existing HIT capabilities vary widely across specialties, the development of meaningful objectives for CDS within such programs must be supported by deliberative analysis.DesignWe developed a conceptual framework and protocol that combines evidence review with expert opinion to elicit clinically meaningful objectives for CDS directly from specialists. The framework links objectives for CDS to specialty-specific performance gaps while ensuring that a workable set of CDS opportunities are available to providers to address each performance gap. Performance gaps may include those with well-established quality measures but also priorities identified by specialists based on their clinical experience. Moreover, objectives are not constrained to performance gaps with existing CDS technologies, but rather may include those for which CDS tools might reasonably be expected to be developed in the near term, for example, by the beginning of Stage 3 of the EHR Incentive program. The protocol uses a modified Delphi expert panel process to elicit and prioritize CDS meaningful use objectives. Experts first rate the importance of performance gaps, beginning with a candidate list generated through an environmental scan and supplemented through nominations by panelists. For the highest priority performance gaps, panelists then rate the extent to which existing or future CDS interventions, characterized jointly as "CDS opportunities," might impact each performance gap and the extent to which each CDS opportunity is compatible with specialists' clinical workflows. The protocol was tested by expert panels representing four clinical specialties: oncology, orthopedic surgery, interventional cardiology, and pediatrics

    Oxidation and crystallization of an amorphous Zr60Al15Ni25 alloy

    Get PDF
    The amorphous ternary metallic alloy Zr60Al15Ni25 was oxidized in dry oxygen in the temperature range 310 ±C to 410 ±C. Rutherford backscattering (RBS) and cross-sectional transmission electron microscopy (TEM) studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel was depleted in the oxide and enriched in the amorphous alloy near the interface. The oxide layer thickness grows parabolically with annealing duration, with a transport constant of 2.8 x 10^-5 m^2/s x exp(-1.7 eV/kT). The oxidation rate may be controlled by the diffusion of Ni in the amorphous alloy. At later stages of the oxidation process, precipitates of nanocrystalline ZrO2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy. An explanation involving preferential oxidation is proposed

    Liver Transplantation to Provide Low-Density-Lipoprotein Receptors and Lower Plasma Cholesterol in a Child with Homozygous Familial Hypercholesterolemia

    Get PDF
    A six-year-old girl with severe hypercholesterolemia and atherosclerosis had two defective genes at the low-density-lipoprotein (LDL) receptor locus, as determined by biochemical studies of cultured fibroblasts. One gene, inherited from the mother, produced no LDL receptors; the other gene, inherited from the father, produced a receptor precursor that was not transported to the cell surface and was unable to bind LDL. The patient degraded intravenously administered 125I-LDL at an extremely low rate, indicating that her high plasma LDL-cholesterol level was caused by defective receptor-mediated removal of LDL from plasma. After transplantation of a liver and a heart from a normal donor, the patient's plasma LDL-cholesterol level declined by 81 per cent, from 988 to 184 mg per deciliter. The fractional catabolic rate for intravenously administered 125I-LDL, a measure of functional LDL receptors in vivo, increased by 2.5-fold. Thus, the transplanted liver, with its normal complement of LDL receptors, was able to remove LDL cholesterol from plasma at a nearly normal rate. We conclude that a genetically determined deficiency of LDL receptors can be largely reversed by liver transplantation. These data underscore the importance of hepatic LDL receptors in controlling the plasma level of LDL cholesterol in human beings. (N Engl J Med 1984; 311: 1658–64.). © 1984, Massachusetts Medical Society. All rights reserved

    A rigorous analysis using optimal transport theory for a two-reflector design problem with a point source

    Get PDF
    We consider the following geometric optics problem: Construct a system of two reflectors which transforms a spherical wavefront generated by a point source into a beam of parallel rays. This beam has a prescribed intensity distribution. We give a rigorous analysis of this problem. The reflectors we construct are (parts of) the boundaries of convex sets. We prove existence of solutions for a large class of input data and give a uniqueness result. To the author's knowledge, this is the first time that a rigorous mathematical analysis of this problem is given. The approach is based on optimal transportation theory. It yields a practical algorithm for finding the reflectors. Namely, the problem is equivalent to a constrained linear optimization problem.Comment: 5 Figures - pdf files attached to submission, but not shown in manuscrip

    Small atom diffusion and breakdown of the Stokes–Einstein relation in the supercooled liquid state of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 alloy

    Get PDF
    Be diffusivity data in the bulk metallic glass forming alloy Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530 and 710 K, extending 85 K into the supercooled liquid state of the alloy. At the glass transition temperature Tg, a change in temperature dependence of the data is observed, and above Tg the diffusivity increases more quickly with temperature than below. The data in the supercooled liquid can be described by a modified Arrhenius expression based on a diffusion mechanism suggested earlier. The comparison with viscosity data in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5 reveals a breakdown of the Stokes–Einstein relation, indicating a cooperative diffusion mechanism in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5
    corecore