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Figure 1: Geometry of the reflector problem. Note our convention regarding
spatial coordinates, illustrated by the coordinate system in the lower left hand
corner: The output beam propagates in the direction of the negative z−axis,
and points in the plane perpendicular to the z−axis are denoted by the vector
x ∈ R

2. Thus a generic point in three dimensional space is denoted by (x, z).
For more details see the accompanying text in Section 2.

reflectors1. This paper deals with the mathematical problem of finding these
reflecting surfaces for given input and output apertures and input and output
intensities2. The geometric optics approximation is assumed.

These types of problems are of practical interest and there exists an exten-
sive engineering literature on them; see Section 5 in V. Oliker’s stimulating
survey paper [6] and the many sources cited there. As explained there, the ap-
proaches described in the engineering literature are usually only applicable to
specific data and are usually only justified by specific numerical examples. In
[6], the problem was reformulated as equation of Monge-Ampère type for the
polar radius of the first reflector. A rigorous mathematical analysis, showing
the existence of solutions, was however lacking as stated in [6].

In the present paper, we provide this rigorous mathematical analysis, using
a novel approach to the problem. (To the best of our knowledge, this is the
first time such a rigorous analysis has been provided.) We show the existence
of solutions for given input and output intensities and provide a uniqueness
result for the ray tracing map associated with the reflector system. The two
reflectors we obtain are always concave; they are contained in the boundary
of certain convex sets. The approach is based on advances in the theory of
Monge-Ampère equations and optimal transportation that have been made
in about the last 15 years [1, 2, 3, 10]. Similar approaches have fruitfully
previously been applied to other beam shaping problems by X-J Wang in [12],
and independently by V. Oliker and the author in [5, 4].

We now describe the approach and results in more detail. For this, denote
the input aperture by D̄, and the output aperture by T̄ . Thus D̄ is a subset of

1A treatment with three reflectors is possible, see [8]. For reasons of space limitations, a
two reflector system is sometimes more desirable from an engineering point of view.

2From a practical point of view, an additional requirement is that no blockage of the
light may occur. We do not deal with this explicitly, but we note that this can generally be
achieved by choosing the reduced optical path length large enough. (See Section 2 for the
definition of the reduced optical path length.)
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the unit sphere S2, and T̄ is contained in a plane perpendicular to the direction
of the output beam. (See again Figure 1.) The input and output intensities
are given by nonnegative functions I(m), m ∈ D̄, and L(x), x ∈ T̄ .

We represent the two reflectors via the polar radius ρ(m), m ∈ D̄ for the
first one, and as the graph of a function z(x), x ∈ T̄ for the second one. See
again Figure 1. One of the main results is that finding the functions ρ(m) and
z(x) is equivalent to solving the following constrained optimization problem
for certain transforms of ρ(m) and z(x):

Minimize

∫

D̄

log ρ̂(m)I(m)dσ +

∫

T̄

log z̃(x)L(x)dx (1)

subject to log ρ̂(m) + log z̃(x) ≥ log K(m, x) for all m ∈ D̄, x ∈ T̄ . (2)

Here log ρ̂(m) and log z̃(x) are certain transforms of ρ(m) and z(x), respec-
tively, given explicitly in Definitions 2.1 and 2.2 below. The constraint is given
by

log K(m, x) = log

[

ℓ − 〈mx, x〉

2ℓ(ℓ2 − |x|2)(1 + mz)
−

1

4ℓ2

]

.

Here m = (mx, mz) ∈ D̄ ⊆ S2, x ∈ T̄ ⊆ R
2, and ℓ > 0 is a constant. For

details see the text below.
Note that this reformulation not only gives a theoretical existence result for

solutions, but it also translates into a practical method for finding the solution.
In fact, the discretization of the constrained optimization problem (1)-(2) is a
standard linear programming problem and can be solved numerically.

As mentioned before, the approach of this paper has a strong connection
to, and is in fact motivated by, the theory of optimal transportation. (See
for example [1, 2, 3], and in general the recent survey [10] and the extremely
extensive bibliography cited there.) Consider the ray tracing map, or reflector
map, γ : D̄ → T̄ . So a ray emitted in the direction m ∈ D̄ will be transformed
by the reflector system into a ray labeled by x = γ(m) ∈ T̄ . (See again
Figure 1, and also Figure 4.)

Consider the optimal transportation problem for moving the measure I(m)dσ
on D̄ ⊆ S2 to the measure L(x)dx on T̄ ⊆ R

2 via a transformation P : D̄ → T̄
in such a way that the “transportation cost”

C(P ) =

∫

D̄

log K(m, P (m))I(m)dσ

is maximized3. We prove that the ray tracing map γ actually solves this

3It is unclear to the author whether the cost C(P ) has any physical meaning. If max-
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problem. This gives a uniqueness result for the reflector map, see Theorem
7.3.

The structure of the paper is as follows: In Section 2, we state the problem
and our notation precisely and introduce the transforms ρ̂(m) and z̃(m). In the
next section, we give certain analytical definitions of our concepts of reflectors
and the corresponding reflector map. In Section 4, we then show that these
analytical constructions correspond to some geometric constructions. This
geometric content is that we seek to represent the first reflector as the boundary
of the intersection of a certain family of spheroids, and we seek to represent the
second reflector as the boundary of the intersection of a family of paraboloids.
We also justify that our abstract definition of the reflector map γ is consistent
with the optical definition. In Section 5, we formulate the reflector problem
and show that it is equivalent to the constrained optimization problem (1)-(2).
Then in the next section, we prove the existence of solutions, which follows
from a standard compactness argument. Finally, in Section 7, we show the
connection to the transportation problem mentioned above, and finally state
the main theorem, Theorem 7.3, on the existence and uniqueness of solutions
to the reflector problem.

Throughout, the treatment is very similar to the papers [5, 4], which treated
similar but distinct beam shaping problems. The main difference is that the
problem at hand requires the introduction of the transforms ρ̂(m) and z̃(x),
and a more complicated form for the cost function log K(m, x). These com-
plications arise mostly because the first reflector is best described using polar
coordinates, and the second reflector is best described using Cartesian coordi-
nates. For the sake of completeness and being self-contained, we include most
of the proofs here, leaving out some details if they can easily be filled in from
[5] and [4].

2 Statement of the problem and assumptions

We first fix our notations and assumptions in this section. Consider the con-
figuration show in Figure 1. A point source located at the origin O = (0, 0, 0)
generates a spherical wave front over a given input aperture D̄ contained in
the unit sphere S2. The latter is required to be transformed into a beam of
parallel rays propagating in the direction of the negative z−axis by means of
a system of two reflectors. A cross section of the output beam is specified as

imizing a transportation cost seems unintuitive, an equivalent formulation is of course to
minimize −C(P )
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a set on a plane perpendicular to the direction of propagation. Such a cross
section is called the output aperture, and denoted by T̄ .

We denote points in space R
3 by pairs (x, z), where x ∈ R

2 is the position
vector in a plane perpendicular to the direction of propagation and z ∈ R is
the coordinate in the (negative) direction of propagation. See again Figure 1
for our convention on the direction of the z−axis. Points on the unit sphere
S2 will typically be denoted by m ∈ S2; their components are also written as
m = (mx, mz) with |mx|

2 + m2
z = 1.

We fix the output aperture in the plane z = −d. We will seek to represent
the two reflectors as the graph of the polar radius ρ(m) and as the graph of a
function z(x), respectively, as shown in Figure 1. That is

Reflector 1: Γρ = {ρ(m) · m
∣

∣ m ∈ D̄},

Reflector 2: Γz = {(x, z(x))
∣

∣ x ∈ T̄}.

We now have the following assumptions on the input data. Let D be
an open, nonempty subset of S2 with closure D̄ such that (0, 0, 1) /∈ D̄ and
(0, 0,−1) /∈ D̄. So there is some ε > 0 such that for m = (mx, mz) ∈ D̄, we
have 1 − ε > mz > −1 + ε. Let further T to be an open, bounded, nonempty
subset of R

2. Denote its closure by T̄ .
The geometrical optics approximation is assumed. It follows from general

principles of geometric optics that all rays will have equal length from (0, 0, 0)
to the plane z = −d; this length is called the optical path length and will be
denoted by L. We define the reduced optical path length as ℓ = L−d. In terms
of the mathematical problem, ℓ is an input parameter. We pick the reduced
optical path length ℓ > 0 large enough so that the following conditions are
satisfied:

ℓ > max
x∈T̄

|x|, and (3)

ℓ − 〈mx, x〉

(ℓ2 − |x|2)(1 + mz)
−

1

2ℓ
> 0 for all m ∈ D̄, x ∈ T̄ . (4)

(It is not hard to see that the second condition is indeed satisfied for large
enough ℓ.)

We’ll also use the convenient notation

δ =
1

2ℓ
.

Finally, we define the following two transformations, which are central to the
analysis:
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Definition 2.1. Let z = z(x) be a continuous function defined on T̄ ⊆ R
2.

Then define the function

z̃(x) = δ −
z(x)

ℓ2 − |x|2
for x ∈ T̄ . (5)

Definition 2.2. Let ρ = ρ(m) be a continuous function defined on D̄ ⊆ S2

with ρ > 0. Then define the function

ρ̂(m) = −δ +
1

2ρ(m) · (mz + 1)
for m ∈ D̄. (6)

These transformations are obviously invertible, namely

z(x) = (−z̃(x) + δ)(ℓ2 − |x|2) for x ∈ T̄ ,

ρ(m) = (2(mz + 1)(ρ̂(m) + δ))−1 for m ∈ D̄.

The following lemma is now obvious with the above formulas.

Lemma 2.3. (i) The transformation C(T̄ ) → C(T̄ ), z 7→ z̃, is a bijection.

(ii) Denote by C>0(D̄) the set of all positive continuous functions on D̄.
Then the transformation C>0(D̄) → {σ ∈ C(D̄)

∣

∣ σ > −δ}, ρ 7→ ρ̂, is a
bijection.

3 Reflector pairs and the reflector map

We now come to the central definition of this paper, namely that of a reflector
pair. We first give the analytic definition. In the next section, we look at the
geometric interpretation. In preparation, we first define the following function:

Definition 3.1. Define the function

K(m, x) = δ
ℓ − 〈mx, x〉

(ℓ2 − |x|2)(1 + mz)
− δ2 for m = (mx, mz) ∈ D̄, x ∈ T̄ .

Note that K(m, x) > 0 by (4). The function log K(m, x) can be interpreted as
some kind of cost of transporting a unit of energy from m to x. (See Section 7
for more details.)

We are now ready to define the notion of a reflector pair.
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Definition 3.2. A pair (ρ, z) ∈ C>0(D̄) × C(T̄ ) is called a reflector pair if
ρ̂, z̃ > 0 and

ρ̂(m) = sup
x∈T̄

(

1

z̃(x)
K(m, x)

)

for m ∈ D̄, (7)

z̃(x) = sup
m∈D̄

(

1

ρ̂(m)
K(m, x)

)

for x ∈ T̄ . (8)

Here we used the definitions of ρ̂ and z̃ from Definitions 2.2 and 2.1. Note
that the suprema on the right hand sides are in fact attained. Also note that
for a reflector pair (ρ, z), we have

ρ̂(m) z̃(x) ≥ K(m, x) for all m ∈ D̄, x ∈ T̄ . (9)

We will show later that reflector pairs are in fact concave (see Propo-
sition 4.8) and that log ρ̂ and log z̃ are uniformly Lipschitz continuous (see
Proposition 6.2).

Finally, we define the reflector map, or ray-tracing map, associated to a
reflector pair. Again, the choice of terminology will become clear when we
consider the problem from a geometric viewpoint in Section 4.4.

Definition 3.3. Let (ρ, z) ∈ C>0(D̄) × C(T̄ ) be a reflector pair. Define its
reflector map, or ray tracing map, as a set-valued map γ : D̄ → {subsets of T̄}
via

γ(m) = {x ∈ T̄
∣

∣ ρ̂(m) =
1

z̃(x)
K(m, x)} for m ∈ D̄.

Clearly γ(m) 6= ∅ for any m ∈ D̄ by (7). We will show later that γ(m) is in
fact single-valued for almost all m ∈ D̄. (See Proposition 4.10.) We may thus
regard γ as a transformation γ : D̄ → T̄ .

4 Reflector pairs: Geometric viewpoint

In this section, we will investigate the definition of reflector pairs from a ge-
ometric point of view. We show that the reflectors can be obtained as the
boundary of certain convex sets. These sets in turn are the intersections of a
family of spheroids (for reflector 1) and paraboloids (for reflector 2), respec-
tively.

In the first two sections, we will use the following notation, the pointwise
analogue of Definitions 2.1 and 2.2: For x ∈ R

2 and z > 0, and m ∈ S2 and
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Figure 2: LEFT: The set Sx,z is a spheroid with foci at the origin O and at
(x, z). S̄x,z is the convex set bounded by Sx,z. The sketch shows a cross section
through a plane containing the axis defined by the foci. The sets Sx,z and S̄x,z

are obtained by rotating the gray ellipse around the axis through the foci as
indicated. RIGHT: The set Px,z is a paraboloid with focus at ρ · m and axis
parallel to the z−axis. P̄ρ·m is the convex set bounded by Pρ·m. The sketch
shows a cross section through a plane containing the axis and the focus. The
sets Pρ·m and P̄ρ·m are obtained by rotating the gray parabola around the axis
as indicated.

ρ > 0, write

z̃ = δ −
z

ℓ2 − |x|2
(10)

ρ̂ = −δ +
1

2ρ (mz + 1)
. (11)

4.1 The spheroids Sx,z

We define first a family of spheroids, indexed by points (x, z).

Definition 4.1. Let x ∈ T̄ and z ∈ R such that z̃ > 0. Define the set

Sx,z = {ρ · m
∣

∣ m ∈ S2, ρ̂ =
1

z̃
K(m, x)}. (12)

Here we used the notation from (10) and (11).

Lemma 4.2. Using the notation from the previous definition, the condition
z̃ > 0 implies ℓ − z > |(x, z)|. (Here |.| denotes the standard Euclidean vector
norm.) The set Sx,z is given by the following equation for ρ > 0, m ∈ S2:

ρ + |(x, z) − ρ · m| = ℓ − z. (13)

Geometrically, Sx,z is a spheroid whose foci are the origin O = (0, 0, 0) and
the point (x, z). (See Figure 2.)

Proof. Note first that the condition z̃ > 0 implies

z = (δ − z̃)(ℓ2 − |x|2) < δ(ℓ2 − |x|2) =
ℓ

2
−

|x|2

2ℓ
,
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and so

ℓ − z >
ℓ

2
+

|x|2

2ℓ
> 0.

Also,
(ℓ − z)2 = ℓ2 + z2 − 2ℓz > z2 + |x|2 = |(x, z)|2.

It follows that
ℓ − z > |(x, z)|.

A straightforward but lengthy algebraic computation now yields that the con-
dition in (12) is equivalent to

(ℓ − z − ρ)2 = |(x, z) − ρ · m|2. (14)

Here ρ = (2(mz + 1)(ρ̂ + δ))−1 > 0, as ρ̂ > 0. We have

ℓ − z > |(x, z)| ≥ ρ − |(x, z) − ρ · m| = ρ − |ℓ − z − ρ|,

and thus ℓ − z − ρ > −|ℓ − z − ρ|. It follows that

ℓ − z − ρ = |ℓ − z − ρ|.

This together with (14) gives equation (13). Now consider the geometric con-
tent of equation (13). We can immediately read off that the set Sx,z consists
of all points that satisfy that the sum of the distances to the points (0, 0, 0)
and (x, z) equals ℓ − z. (See Figure 2. Also note that ℓ − z > |(x, z)| implies
that the set Sx,z is nonempty.) This is by definition a spheroid.

Definition 4.3. Let as before x ∈ R
2 and z ∈ R such that z̃ > 0. Denote by

S̄x,z the closed convex set bounded by Sx,z. Thus S̄x,z is given by

S̄(x,z) = {ρ · m
∣

∣ m ∈ S2, ρ̂ ≥
1

z̃
K(m, x)}. (15)

4.2 The paraboloids Pρ·m

Similarly to the previous section, we now define a family of paraboloids Pρ·m.

Definition 4.4. Let m ∈ D̄ ⊆ S2 and ρ > 0 such that ρ̂ > 0. Define the set

Pρ·m = {(x, z)
∣

∣ x ∈ R
2, z̃ =

1

ρ̂
K(m, x)}. (16)

Here we used again the notation (10), (11).
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Lemma 4.5. With the notation of the previous definition, consider new coor-
dinates (p, q) obtained by a shift by ρ · m, that is (p, q) = (x, z) − ρ · m. Then
the set Pρ·m is given by the equation

4aq = |p|2 − 4a2 (17)

where

a =
2ρδ(1 + mz) − 1

4δ
< 0.

Geometrically, Pρ·m is a paraboloid with focus at ρ ·m and axis parallel to the
z−axis. It opens in the directions of the negative z−axis. (See Figure 2.)

Proof. A straightforward computation yields that (16) is equivalent to (17).
Note that a paraboloid with focus at (0, 0, 0) and focal parameter 2α has the
equation 4αz = |x|2 − 4α2. Also note that a < 0 follows from ρ̂ > 0.

Definition 4.6. Let as before m ∈ D̄ ⊆ S2 and ρ > 0 such that ρ̂ > 0. Denote
by P̄ρ·m the closed convex set bounded by Pρ·m. Thus P̄ρ·m is given by

P̄ρ·m = {(x, z)
∣

∣ x ∈ R
2, z̃ ≥

1

ρ̂
K(m, x)}. (18)

4.3 Geometry of reflector pairs

We now investigate the geometric content of the definition of reflector pairs.
For this, suppose that (ρ, z) ∈ C>0(D̄)×C(T̄ ) is a reflector pair. Consider the
two sets

S̄ =
⋂

x∈T̄

S̄x,z(x), (19)

P̄ =
⋂

m∈D̄

P̄ρ(m)m. (20)

Note that none of the sets S̄x,z(x) and P̄ρ(m)m are empty as in fact ρ̂(m) > 0
for all m ∈ D̄ by definition of reflector pairs and z̃(x) > 0 for all x ∈ T̄ . A
compactness argument yields that P̄ and S̄ are nonempty as well, and they
are convex sets, since they are the intersections of convex sets. Moreover, the
algebraic representations (15) and (18) along with the definition of reflector
pairs immediately give rise to the following geometric facts:

Proposition 4.7. Let (ρ, z) ∈ C>0(D̄) × C(T̄ ) be a reflector pair.

10



Figure 3: Geometry of reflector pairs. LEFT: The graph Γρ of ρ(m) is obtained
by intersecting the boundary of the convex set S̄ with the cone R

+D̄. RIGHT:
The graph Γz of z(x) is obtained by intersecting the boundary of the convex
set P̄ with the cylinder T̄ × R.

(i) The graph of ρ,
Γρ = {ρ(m) · m

∣

∣ m ∈ D̄},

is contained in the boundary ∂S̄ of the convex set S̄ given in (19). In
fact,

Γρ = ∂S̄ ∩ (R+ · D̄),

where R
+ · D̄ = {r ·m

∣

∣ r ≥ 0, m ∈ D̄} is a cone with vertex at the origin
and cross section D̄. (See Figure 3.)

(ii) The graph of ρ,
Γz = {(x, z(x))

∣

∣ x ∈ T̄}

is contained in the boundary ∂P̄ of the convex set P̄ given in (20). In
fact,

Γz = ∂P̄ ∩ (T̄ × R),

where T̄ × R = {(x, h)
∣

∣ x ∈ T̄ , h ∈ R} is the cylinder with base T̄ . (See
Figure 3.)

We may thus think of the two reflectors as the “envelopes” of certain fami-
lies of spheroids and paraboloids, respectively. An immediate corollary is also
the following result:

Proposition 4.8. If (ρ, z) ∈ C>0(D̄) × C(T̄ ) is a reflector pair, then z is a
concave function and ρ is the radial function of a convex set. In particular, both
ρ and z are locally Lipschitz continuous and almost everywhere differentiable.
(Here “almost everywhere” refers to the standard Lebesgue measures on S2

and R
2, respectively.)

Proof. The first part of the above statement follows immediately from the pre-
vious discussion. The Lipschitz and differentiablility properties are standard
results from convexity theories, see [9], Theorem 1.5.1 and Section 1.7.
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4.4 Geometry of the reflector map

We now investigate the geometry of the reflector map. For this, the following
terminology is useful: Suppose (ρ, z) ∈ C>0(D̄)×C(T̄ ) is a reflector pair. For
m ∈ D̄, if ρ(m) · m ∈ Γρ ∩ Sx,z(x), say that the spheroid Sx,z(x) is supporting
to the graph Γρ at the point ρ(m) · m.

Similarly, for x ∈ T̄ , if (x, z(x)) ∈ Γz ∩ Pρ(m)·m, say the paraboloid Pρ(m)·m

is supporting to Γz at (x, z(x)).
Note that Sx,z(x) is supporting to Γρ at the point ρ(m) · m if and only if

Pρ(m)·m is supporting to Γz at (x, z(x)). This is because both statements are
equivalent to

z̃(x) ρ̂(m) = K(m, x)

by the definitions (16) and (12).
We also have the following geometric lemma:

Lemma 4.9. Let x1, x2 ∈ T̄ be two distinct point: x1 6= x2. Suppose the
spheroids Sx1,z(x1) and Sx2,z(x2) are supporting to Γρ at the same point ρ(m) ·m.
Then Sx1,z(x1) and Sx2,z(x2) intersect tranversally at ρ(m) · m.

Proof. Assume the contrary, that is, that Sx1,z(x1) and Sx2,z(x2) intersect tan-
gentially to each other. Since the two spheroids share the focus O, it follows
from basic properties of ellipsoids that the two line segments (x1, z(x1)), ρ(m) · m
and (x2, z(x2)), ρ(m) · m are parallel. Thus the three points (x1, z(x1)),(x2, z(x2))
and ρ(m) · m are collinear. On the axis through these three points, the point
ρ(m)·m cannot lie between the other two points; that is ρ(m)·m must be one of
the end points of the line segment defined by the three points. But this contra-
dicts that the paraboloid Pρ(m)·m contains both (x1, z(x1)) and (x2, z(x2)).

Now consider the reflector map γ associated with a reflector pair (ρ, z)
as defined in Definition 3.3. In the language defined above, we may now
say that γ(m) is the set of all points x ∈ T̄ such that that the spheroid
Sx,z(x) is supporting to the graph Γρ at the point ρ(m) · m. Consider the
case where for some m ∈ D̄, the set γ(m) contains more than one point, say
{x1, x2} ⊆ γ(m). By the previous lemma, the two spheroids Sx1,z(x1) and
Sx2,z(x2) intersect transversally at ρ(m) · m. Thus ρ is not differentiable at
m. But the set of such points has measure zero by Proposition 4.8. We thus
immediately have the following result:

Proposition 4.10. Let (ρ, z) ∈ C>0(D̄) × C(T̄ ) be a reflector pair. Then its
reflector map γ : D̄ → T̄ is almost everywhere single-valued. That is, the set of
points m where γ(m) is not single valued has measure zero with respect to the

12



Figure 4: Geometry of the reflector map: A ray emitted from the origin O will
be reflected to a ray traveling in the negative z−direction labeled by x = γ(x).
See the text for details.

standard measure on S2 as a submanifold of the measure space (R3, µ), where
µ is the standard Lebesgue measure.

Remark 4.11. We now justify the terminology of the reflector map from
an optical point of view. See Figure 4 for the following considerations. Let
(ρ, z) ∈ C>0(D̄) × C(T̄ ) be a reflector pair. Let m ∈ D̄ such that γ(m) is
single valued. We show that under the geometric optics approximation, a ray
emitted in the direction m ∈ D̄ will be reflected off the first reflector Γρ and
then the second reflector Γz in such a way that the reflected ray is parallel to
the negative z−axis and that it intersects a plane perpendicular to the z−axis
in the point x = γ(m).

Consider the reflection off reflector 1 first. Since the spheroid Sx,z(x) is
tangential to the reflector Γρ, the ray will be reflected off Γρ the same way it
would be reflected off Sx,z(x). By the geometrical properties of spheroids, this
means that the ray is reflected towards the focus (x, z(x)). There, the ray will
encounter Γz. It will be reflected the same way as it would be reflected off the
paraboloid Pρ(m)·m, that is, in the direction of the negative z−axis.

Thus our definition of the reflector map is in agreement with the physical
law of reflection. In the case when γ(m) is multi-valued, the first reflector has
a singular point and a ray will split up into a cone of light rays. These rays
will generate a set of directions whose projection onto a plane perpendicular
to the z−axis is γ(m). This is consistent with the physical phenomenon of
diffraction at singularities.

The following statements about the reflector map γ(m) are analogous to
Theorem 4.8 and Lemma 4.9 in [5]. See this paper and the the reference [7]
for further details on the proofs.

Theorem 4.12. Let B denote the σ algebra of Borel sets on T̄ . Then for any
subset τ ∈ B, γ−1(τ) is measurable relative to the standard Lebesgue measure
of D̄. In addition, for any non-negative locally integrable function I on D̄, the
function

L(τ) =

∫

γ−1(τ)

I(m)dσ

13



is a non-negative completely additive measure on B. (Here dσ is the standard
measure on S2 ⊆ R

3.)

Lemma 4.13. With the notation of the above Theorem, let h be a continuous
function on T̄ . Then we have

∫

T̄

h(x)L(dx) =

∫

D̄

h(γ(m))I(m)dσ.

5 The reflector problem and an equivalent con-

strained minimization problem

Let now I be a nonnegative, integrable function on D̄, and L be a nonnegative,
integrable function on T̄ , such that

∫

D̄

I(m)dσ =

∫

T̄

L(x)dx. (21)

We may interpret I and L as the intensity distribution functions of the light
beams on the input and output apertures, respectively. The above integral
condition is simply (total) energy conservation.

In this section of the paper, we now formulate the reflector problem. More
specifically, we can call this formulation a “weak” version of the reflector prob-
lem since we do not require the input functions I and L to be differentiable,
nor do we require the reflectors to be smooth surfaces.

We then formulate a second problem, which is an infinite dimensional linear
programming problem. One of the main results is that the two problems are
in fact equivalent. This is stated and proved at the end of this section.

Let us first formulate the reflector problem:

Problem I. (Reflector Problem) For given input and output intensities I
and L satisfying (21), find a pair (z, ρ) ∈ C>0(D̄) × C(T̄ ) that satisfies the
following conditions:

(i) (z, ρ) is a reflector pair

(ii) The reflector map γ : D̄ → T̄ satisfies
∫

γ−1(τ)

I(m)dσ =

∫

τ

L(x)dx

for any Borel set τ ⊆ T̄ .

14



This formulation builds on the geometrical interpretation of reflector maps
as presented in Section 4. Note that condition (ii) is local energy conservation.

We have the following immediate corollary from Lemma 4.13:

Corollary 5.1. Let (z, ρ) be a solution to Problem I. Then we have
∫

D̄

h(γ(m))I(m)dσ =

∫

T̄

h(x)L(x)dx

for all functions h ∈ C(T̄ ).

Before we now formulate Problem II, we define the following function space:

Definition 5.2. Define the set of admissible functions as

Adm(D̄, T̄ ) = {(r, ζ) ∈ C(D̄) × C(T̄ )
∣

∣ r(m) + ζ(x) ≥ log K(m, x)

for all m ∈ D̄, x ∈ T̄}.

Problem II. Minimize the functional

F(r, ζ) =

∫

D̄

r(m)I(m)dσ +

∫

T̄

ζ(x)L(x)dx

on the space Adm(D̄, T̄ ).

The two problems are equivalent, as expressed in the following theorem.

Theorem 5.3. Let (ρ, z) ∈ C>0(D̄)×C(T̄ ) be a reflector pair. Then (log ρ̂, log z̃) ∈
Adm(D̄, T̄ ). The following statements are equivalent:

(i) (ρ, z) solves the Reflector Problem I.

(ii) (log ρ̂, log z̃) minimizes the functional F on Adm(D̄, T̄ ).

Proof. The statement (log ρ̂, log z̃) ∈ Adm(D̄, T̄ ) follows immediately from (9).
The proof of the equivalence of (i) and (ii) is analogous to those of Theorem
5.2 in [5] and Theorem 3.4 in [4]. See also Theorem 1 in [3]. Since this theorem
is central to this paper, we give an outline of the proof, omitting some of the
technicalities, which can be filled in with the above references.

(i) ⇒ (ii) : Suppose (ρ, z) solves Problem I with corresponding reflector
map γ. Let (r, ζ) ∈ Adm(D̄, T̄ ). Then for any m ∈ D̄ such that γ(m) is
single-valued, we have

r(m) + ζ(γ(m)) ≥ log K(m, γ(m)) = log ρ̂(m) + log z̃(γ(m)).
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This yields
∫

D̄

r(m)I(m)dσ+

∫

D̄

ζ(γ(m))I(m)dσ

≥

∫

D̄

log ρ̂(m)I(m)dσ +

∫

D̄

log z̃(γ(m))I(m)dσ.

Now using Corollary 5.1 gives F(r, ζ) ≥ F(log z̃, log ρ̂).

(ii) ⇒ (i) : The main idea is that the Euler-Lagrange equations of mini-
mizing F are equivalent to the equality

∫

D̄

h(γ(m))I(m)dσ =

∫

T̄

h(x)L(x)dx

for all functions h ∈ C(T̄ ). This implies that (ρ, z) solves Problem I.
Let thus h ∈ C(T̄ ). Let ε > 0 be a small parameter. To bring out the main

ideas, we present a formal calculation, assuming expansions in ε are valid. A
completely rigorous treatment is possible; indeed the proof in [5] can easily be
modified to the problem at hand.

Define perturbations (rε, ζε) ∈ Adm(D̄, T̄ ) of (log ρ̂, log z̃) via

ζε(x) = log z̃(x) + ε h(x) for x ∈ T̄

rε(m) = sup
x∈T̄

(−ζε(x) + log K(m, x)) for m ∈ D̄.

Let now xε be a point where the supremum in the definition of rε(m) is at-
tained. Expanding xε in ε yields

xε = γ(m) + O(ε).

Thus again an expansion in ε gives

rε(m) = −ζε(xε) + log K(m, xε)

= − log z̃(γ(m)) + log K(m, γ(m)) − ε h(γ(m)) + O(ε2)

= log ρ̂(m) − ε h(γ(m)) + O(ε2).

Thus, using the fact that (log ρ̂, log z̃) minimizes F ,

0 =
d

dε

∣

∣

∣

ε=0
F(rε, ζε) = −

∫

D̄

h(γ(m))I(m)dσ +

∫

T̄

h(x)L(x)dx.

This completes the sketch of the proof.
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6 Existence of solutions

Note that Theorem 5.3, while showing that Problems I and II are equivalent,
does not state that solutions exist. We prove this in the present section.

In the following, fix some point m∗ ∈ D̄.

Definition 6.1. Set

Admrefl(D̄, T̄ ) = {(log ρ̂, log z̃) ∈ C(D̄) × C(T̄ )
∣

∣

(ρ, z) is a reflector pair with log ρ̂(m∗) = 0}.

Note that Admrefl(D̄, T̄ ) ⊆ Adm(D̄, T̄ ).

Proposition 6.2. The family of pairs of functions Admrefl(D̄, T̄ ) is uniformly
Lipschitz continuous in each entry. That is, there are constants K1, K2 > 0
such that

|ζ(x1) − ζ(x2)| ≤ K1 · |x1 − x2|

|r(m1) − r(m2)| ≤ K2 · d(m1, m2)

for all (r, ζ) ∈ Admrefl(D̄, T̄ ), x1, x2 ∈ T̄ , m1, m2 ∈ D̄. Here d(m1, m2) =
distS2(m1, m2) is the intrinsic distance on S2. The constants K1, K2 only
depend on D̄, T̄ ; explicitly, we have

K1 = max
m∈D̄,x∈T̄

|∇x log K(m, x)|,

K2 = max
m∈D̄,x∈T̄

|∇m log K(m, x)|.

(Here ∇m denotes the gradient with respect to the variable m on the sphere
S2, and ∇x is the gradient with respect to x.)

Proof. We prove the inequality for ζ ; the proof of the other inequality is com-
pletely analogous. Let x1, x2 ∈ T̄ and (r, ζ) ∈ Admrefl(D̄, T̄ ). Assume ζ(x2) ≤
ζ(x1), otherwise relabel x1, x2. Let m1 ∈ D̄ be such that ζ(x1) + r(m1) =
log K(m1, x1). (Such an m1 exists by (8).) Then

0 ≤ ζ(x1) − ζ(x2) = −ζ(x2) − r(m1) + log K(m1, x1)

≤ log K(m1, x1) − log K(m1, x2)

≤

(

max
m∈D̄,x∈T̄

|∇x log K(m, x)|

)

· |x1 − x2|.
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Proposition 6.3. Functions in Admrefl(D̄, T̄ ) are uniformly bounded. Specif-
ically, we have

|r(m)| ≤ K1 diam(D̄)

|ζ(x)| ≤ max
x′∈T̄

| log K(m∗, x′)| + K2 diam(T̄ ).

for all (r, ζ) ∈ Admrefl(D̄, T̄ ), x ∈ T̄ , m ∈ D̄. Here K1, K2 are as in Proposi-
tion 6.2, and diam(T̄ ) = maxx1,x2∈T̄ |x1−x2| and diam(D̄) = maxm1,m2∈D̄ d(m1, m2)
are the diameters of T̄ and D̄, respectively.

Proof. Let (r, ζ) ∈ Admrefl(D̄, T̄ ), x ∈ T̄ , m ∈ D̄. By Proposition 6.2, we have

|r(m)| ≤ |r(m∗)| + K1 d(m, m∗) ≤ K1 diam(D̄).

Also, for some x∗ ∈ γ(m∗), we have ζ(x∗) = log K(m∗, x∗), and thus again by
Proposition 6.2,

|ζ(x)| ≤ |ζ(x∗)| + K2 |x − x∗| ≤ max
x′∈T̄

| log K(m∗, x′)| + K2 diam(T̄ ).

We can now prove the existence of a solution to Problem II. With Theo-
rem 5.3, this immediately implies the existence of a solution to the reflector
problem.

Theorem 6.4. The functional F attains its minimum on Adm(D̄, T̄ ). More-
over, this minimum is actually attained at some (r, ζ) ∈ Admrefl(D̄, T̄ ).

Corollary 6.5. The Reflector Problem I has a solution.

Proof. By Propositions 6.2 and 6.3 and the Arzelà-Ascoli Theorem, the func-
tional F attains its minimum on Admrefl(D̄, T̄ ).

We now show that this minimum is also the minimum of F on the larger
set Adm(D̄, T̄ ). For this, let (r, ζ) ∈ Adm(D̄, T̄ ). Define

r∗(m) = sup
x∈T̄

{−ζ(x) + log K(m, x)} for m ∈ D̄

ζ∗(x) = sup
m∈D̄

{−r∗(m) + log K(m, x)} for x ∈ T̄

It follows that
r∗(m) ≤ r(m), ζ∗(x) ≤ ζ(x)
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for all m ∈ D̄, x ∈ T̄ . Note that ζ∗(x) ≤ ζ(x) implies

sup
x∈T̄

{−ζ∗(x) + log K(m, x)} ≥ sup
x∈T̄

{−ζ(x) + log K(m, x)} = r∗(m).

But −ζ∗(x) + log K(m, x) ≤ r∗(m) for all x ∈ T̄ , m ∈ D̄ implies

sup
x∈T̄

{−ζ∗(x) + log K(m, x)} ≤ r∗(m).

It follows that

r∗(m) = sup
x∈T̄

{−ζ∗(x) + log K(m, x)} for m ∈ D̄.

Thus (r∗, ζ∗) = (log ρ̂, log z̃) for some reflector pair (ρ, z). Note that

(r∗ − r∗(m∗), ζ∗ + r∗(m∗)) ∈ Admrefl(D̄, T̄ ),

where the left hand pair denotes functions shifted by the constants ±r∗(m∗).
Using the above, we now have

F(r∗ − r∗(m∗), ζ∗ + r∗(m∗)) = F(r∗, ζ∗) =

∫

D̄

r∗(m)I(m)dσ +

∫

T̄

ζ∗(x)L(x)dx

≤

∫

D̄

r(m)I(m)dσ +

∫

T̄

ζ(x)L(x)dx = F(r, ζ).

This shows that indeed the minimum of F on Adm(D̄, T̄ ) is attained on
Admrefl(D̄, T̄ ). The corollary is an immediate consequence of Theorem 5.3.

7 A uniqueness result and connection to an

optimal transportation problem

In this section, we show the connection to an optimal transportation problem.
This is again quite analogous to the reflector design problems in [5] and [4].
This connection allows us to formulate a uniqueness result for the Reflector
Problem I.

For the formulation of the problem, we need the concept of a plan in this
context:

Definition 7.1. A plan is a map P : D̄ → T̄ that is measure preserving, that
is, we have

∫

D̄

h(P (m))I(m)dσ =

∫

T̄

h(x)L(x)dx

for any function h ∈ C(T̄ ).
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A plan P needs only be defined almost everywhere on D̄.
The optimal transportation problem associated with intensities I(m) and

L(x) satisfying energy conservation (21) and with cost function log K(m, x) is
the following:

Problem III. Maximize the transportation cost

P 7→ C(P ) =

∫

D̄

log K(m, P (m))I(m)dσ (22)

among all plans P.

This problem is again solved by the reflector map of a solution to the
Reflector Problem I. In fact, we have the following theorem:

Theorem 7.2. Let (z, ρ) be a solution to the Reflector Problem I. Then the
corresponding reflector map γ is a plan, and it maximizes the transportation
cost (22) among all plans. Any other cost maximizing plan is equal to γ almost
everywhere on supp I \ {m ∈ D̄

∣

∣ I(m) = 0}.

Proof. Let (z, ρ) be a solution to the Reflector Problem I with corresponding
reflector map γ. By Corollary 5.1, γ is in fact a plan. Now let P be another
plan. Then

log ρ̂(m) + log z̃(P (m)) ≥ log K(m, P (m))

for almost all m ∈ D̄, and equality holds iff P (m) = γ(m). Thus

C(P ) =

∫

D̄

log K(m, P (m))I(m)dσ

≤

∫

D̄

log ρ̂(m)I(m)dσ +

∫

D̄

log z̃(P (m))I(m)dσ

=

∫

D̄

log ρ̂(m)I(m)dσ +

∫

T̄

log z̃(x)L(x)dx

=

∫

D̄

log ρ̂(m)I(m)dσ +

∫

D̄

log z̃(γ(m))I(m)dσ

=

∫

D̄

log K(m, γ(m)) = C(γ).

Thus γ indeed maximizes the transportation cost among all plans. Moreover,
if equality holds in the above estimate, then γ(m) = P (m) or I(m) = 0 for
almost all m ∈ D̄.
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We can now state the following theorem, summarizing the main result
on the existence of solutions to the Reflector Problem I with an additional
uniqueness result:

Theorem 7.3. (Existence and uniqueness for solutions to the Reflector Prob-
lem I) There exist solutions to the Reflector Problem I. If (ρ, z) is a solution,
then both ρ and z are Lipschitz continuous. The corresponding reflector map
γ : D̄ → T̄ is single valued almost everywhere on D̄. If (ρ, z) and (ρ′, z′) are
two solutions with reflector maps γ and γ′, respectively, then γ(m) = γ′(m)
for almost all m ∈ supp I \ {m ∈ D̄

∣

∣ I(m) = 0}.

Proof. The existence of solutions to Problem I was already obtained in Corol-
lary 6.5. If now γ and γ′ are two reflector maps corresponding to two solutions,
then both maximize the transportation cost C by Theorem 7.2, and hence we
have γ(x) = γ(x′) for almost all supp I \ {m ∈ D̄

∣

∣ I(m) = 0}.

There is a number of open questions for further investigations. For in-
stance, we have assumed certain constraints on the aperture D̄, in particular
(0, 0,−1) /∈ D̄. From the physical intuition about the problem, these con-
straints appear to be unnecessary. It would be interesting to extend the theory
to these cases as well. Furthermore, a further exploration of the regularity of
solutions (ρ, z) depending on the intensities I and L would be desirable. It is
expected that some of the currently rapidly growing research on optimal trans-
portation may carry over here. (See the recent survey [10] and the extremely
extensive bibliography cited there.)
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