459 research outputs found

    A diverse panel of hepatitis C virus glycoproteins for use in vaccine research reveals extremes of monoclonal antibody neutralization resistance

    Get PDF
    Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCVE1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient- derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCVE1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies

    A Transport and Microwave Study of Superconducting and Magnetic RuSr2EuCu2O8

    Get PDF
    We have performed susceptibility, thermopower, dc resistance and microwave measurements on RuSr2EuCu2O8. This compound has recently been shown to display the coexistence of both superconducting and magnetic order. We find clear evidence of changes in the dc and microwave resistance near the magnetic ordering temperature (132 K). The intergranular effects were separated from the intragranular effects by performing microwave measurements on a sintered ceramic sample as well as on a powder sample dispersed in an epoxy resin. We show that the data can be interpreted in terms of the normal-state resistivity being dominated by the CuO2 layers with exchange coupling to the Ru moments in the RuO2 layers. Furthermore, most of the normal-state semiconductor-like upturn in the microwave resistance is found to arise from intergranular transport. The data in the superconducting state can be consistently interpreted in terms of intergranular weak-links and an intragranular spontaneous vortex phase due to the ferromagnetic component of the magnetization arising from the RuO2 planes.Comment: 20 pages including 6 figures in pdf format. To be published in Phys. Rev.

    Generalizing with perceptrons in case of structured phase- and pattern-spaces

    Full text link
    We investigate the influence of different kinds of structure on the learning behaviour of a perceptron performing a classification task defined by a teacher rule. The underlying pattern distribution is permitted to have spatial correlations. The prior distribution for the teacher coupling vectors itself is assumed to be nonuniform. Thus classification tasks of quite different difficulty are included. As learning algorithms we discuss Hebbian learning, Gibbs learning, and Bayesian learning with different priors, using methods from statistics and the replica formalism. We find that the Hebb rule is quite sensitive to the structure of the actual learning problem, failing asymptotically in most cases. Contrarily, the behaviour of the more sophisticated methods of Gibbs and Bayes learning is influenced by the spatial correlations only in an intermediate regime of α\alpha, where α\alpha specifies the size of the training set. Concerning the Bayesian case we show, how enhanced prior knowledge improves the performance.Comment: LaTeX, 32 pages with eps-figs, accepted by J Phys

    Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt).

    Get PDF
    Transmembrane O-methyltransferase (TOMT / LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle

    Absence of Meissner State and Robust Ferromagnetism in the Superconducting State of UCoGe: Possible Evidence of Spontaneous Vortex State

    Full text link
    We report ac magnetic susceptibility and dc magnetization measurements on the superconducting ferromagnet UCoGe (with superconducting and Curie temperatures of TSC0.5T_{{\rm SC}} \sim 0.5~K and TCurie2.5T_{{\rm Curie}} \sim 2.5~K, respectively). In the normal, ferromagnetic state (TSC<T<TCurieT_{{\rm SC}} < T < T_{{\rm Curie}}), the magnetization curve exhibits a hysteresis loop similar to that of a regular itinerant ferromagnet. Upon lowering the temperature below TSCT_{{\rm SC}}, the spontaneous magnetization is unchanged, but the hysteresis is markedly enhanced. Even deeply inside the superconducting state, ferromagnetism is not completely shielded, and there is no Meissner region, a magnetic field region of H<Hc1H < H_{\rm c1} (a lower critical field). From these results, we suggest that UCoGe is the first material in which ferromagnetism robustly survives in the superconducting state and a spontaneous vortex state without the Meissner state is realized.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp

    A comparison of low carbon investment needs between China and Europe in stringent climate policy scenarios

    Get PDF
    The radical change in recent global climate governance calls for China and Europe to ramp up their efforts in leading the world to reach the long-term climate goals. By analyzing the results from the state-of-the-art global integrated assessment model, MESSAGEix-GLOBIOM, this paper aims to understand the future levels of financial investment needed for building and maintaining energy-related infrastructure in the two regions for fulfilling stringent targets consistent with 'well below 2 °C'. The results indicate that a rapid upscaling and structural change of these investments towards decarbonization are necessitated by the climate stringent scenarios. China and Europe need to increase their low carbon investments by 65% and 38% in a scenario reaching the 2° target relative to their respective reference scenarios which assume no such target from 2016–2050. In a more stringent climate policy scenario of the 1.5° target, these investment needs will increase by 149% and 79% for China and Europe respectively. Among all the energy sectors, energy efficiency, renewable electricity generation and electricity transmission and distribution are the three largest investing targets for the two regions. However, those investments will not likely be realized without strong policy incentives. Implications for green finance and multilateral cooperation initiatives are discussed in the context of the scenario results

    Gas hydrates: Entrance to a methane age or climate threat?

    Get PDF
    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates -- in particular if combined with carbon capture and storage -- to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
    corecore