104 research outputs found

    Strong mechanical driving of a single electron spin

    Get PDF
    Quantum devices for sensing and computing applications require coherent quantum systems which can be manipulated in a fast and robust way. Such quantum control is typically achieved using external electric or magnetic fields which drive the system's orbital or spin degrees of freedom. However, most of these approaches require complex and unwieldy antenna or gate structures, and with few exceptions are limited to the regime of weak driving. Here, we present a novel approach to strongly and coherently drive a single electron spin in the solid state using internal strain fields in an integrated quantum device. Specifically, we study individual Nitrogen-Vacancy (NV) spins embedded in diamond mechanical oscillators and exploit the intrinsic strain coupling between spin and oscillator to strongly drive the spins. As hallmarks of the strong driving regime, we directly observe the energy spectrum of the emerging phonon-dressed states and employ our strong, continuous driving for enhancement of the NV spin coherence time. Our results constitute a first step towards strain-driven, integrated quantum devices and open new perspectives to investigate unexplored regimes of strongly driven multi-level systems and to study exotic spin dynamics in hybrid spin-oscillator devices.We gratefully acknowledge financial support from SNI; NCCR QSIT; SNF grants 200021_143697; and EU FP7 grant 611143 (DIADEMS). AN holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nphys341

    Measurement of the light component (p+He) energy spectrum with the DAMPE space mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE) is a space-based particle detector launched in a Sun- synchronous orbit on December 17th, 2015 from the Jiuquan Satellite Launch Center, in China. It has been taking data very smoothly for more than 5 years. Science goals of the DAMPE mission include the study of the electron-positron energy spectrum, the study of galactic cosmic-rays, gamma-ray astronomy, and indirect dark matter search. Performing precise measurements of light elements in space, the most abundant components of cosmic radiation, is necessary to address major problems in galactic cosmic ray acceleration and propagation mechanisms. Selecting a combined proton and helium sample (instead of proton or helium alone) allows larger efficiency and purity, also minimizing systematic effects in the reconstruction of the energy spectrum, due to possible cross-contaminations. The use of looser analysis cuts allows collecting larger statistics thus extending the covered energy range and providing a link between direct and indirect cosmic- ray measurements. The measurement of the p+He energy spectrum up to ∼ 150 TeV will be presented, along with a discussion on the features of the spectrum and a comparison with other experimental results

    Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function

    Get PDF
    Neurodegenerative disorders are associated with impaired cognitive function and worse physical health outcomes. This study aims to test whether polygenic risk for Alzheimer’s disease, Amyotrophic Lateral Sclerosis (ALS), or frontotemporal dementia (FTD) is associated with cognitive function and physical health in the UK Biobank, a cohort of healthy individuals. Group-based analyses were then performed to compare the top and bottom 10% for the three neurodegenerative polygenic risk scores; these groups were compared on the cognitive and physical health variables. Higher polygenic risk for AD, ALS, and FTD was associated with lower cognitive performance. Higher polygenic risk for FTD was also associated with increased forced expiratory volume in 1s and peak expiratory flow. A significant group difference was observed on the symbol digit substitution task between individuals with high polygenic risk for FTD and high polygenic risk for ALS. The results suggest some overlap between polygenic risk for neurodegenerative disorders, cognitive function and physical health

    Observations of Forbush Decreases of Cosmic-Ray Electrons and Positrons with the Dark Matter Particle Explorer

    Get PDF
    The Forbush decrease (FD) represents the rapid decrease of the intensities of charged particles accompanied with the coronal mass ejections or high-speed streams from coronal holes. It has been mainly explored with the ground-based neutron monitor network, which indirectly measures the integrated intensities of all species of cosmic rays by counting secondary neutrons produced from interaction between atmospheric atoms and cosmic rays. The space-based experiments can resolve the species of particles but the energy ranges are limited by the relatively small acceptances except for the most abundant particles like protons and helium. Therefore, the FD of cosmic-ray electrons and positrons have just been investigated by the PAMELA experiment in the low-energy range (<5 GeV) with limited statistics. In this paper, we study the FD event that occurred in 2017 September with the electron and positron data recorded by the Dark Matter Particle Explorer. The evolution of the FDs from 2 GeV to 20 GeV with a time resolution of 6 hr are given. We observe two solar energetic particle events in the time profile of the intensity of cosmic rays, the earlier, and weaker, one has not been shown in the neutron monitor data. Furthermore, both the amplitude and recovery time of fluxes of electrons and positrons show clear energy dependence, which is important in probing the disturbances of the interplanetary environment by the coronal mass ejections

    Analyzing the Fermi Bubbles with DArk Matter Particle Explorer

    Get PDF
    The Fermi bubbles are two large structures above and below the Galactic Plane. They are first discovered by Fermi-LAT and thought to be related to the jet or the wind from the Galactic center. The DArk Matter Particle Explorer (DAMPE) is a space-borne high energy particle telescope aiming at measuring cosmic rays and photons in a broad energy range. In this work, we use 4.8 years of DAMPE photon data to search for the emission from the Fermi Bubbles. We calculate the TS values of the lobes and the significance of its curved spectrum. The obtained spectral parameters are then compared with those from the Fermi-LAT. We also search for the emission from the cocoon in the southeast part of lobes. Since the Galactic diffuse emission (GDE) model is a major source of systematic uncertainty, we also switch to the GDE models calculated with Galprop and evaluate the influence

    Direct Measurement of the Cosmic-Ray Iron Spectrum with the Dark Matter Particle Explorer

    Get PDF
    Dark Matter Particle Explorer(DAMPE) is a calorimetric-type, satellite-borne detector for observations of high energy electrons, gamma-rays, and cosmic-ray nuclei. Using five years data collected with DAMPE from January 1, 2016 to December 31, 2020, we analyzed the spectrum of iron. Detailed studies of the fragmentation of iron in the detector have been performed using Monte Carlo simulations

    Machine learning methods for helium flux analysis with DAMPE experiment

    Get PDF
    DAMPE is a space-borne experiment for the measurement of the cosmic-ray fluxes at energies up to around 100 TeV per nucleon. At energies above several tens of TeV, the electronics of DAMPE calorimeter would saturate, leaving certain bars with no energy recorded. It is also observed that at high energies the tracker and the scintillator detector that serve for the charge identification become heavily populated with back-splash tracks. Both effects interfere in precise measurements of the helium flux at highest energies. In the present contribution we discuss the application of machine learning techniques for the treatment of DAMPE data, to compensate the calorimeter energy lost by saturation and to identify helium events
    corecore