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Abstract

Neurodegenerative disorders are associated with impaired cognitive function and worse

physical health outcomes. This study aims to test whether polygenic risk for Alzheimer’s dis-

ease, Amyotrophic Lateral Sclerosis (ALS), or frontotemporal dementia (FTD) is associated

with cognitive function and physical health in the UK Biobank, a cohort of healthy individuals.

Group-based analyses were then performed to compare the top and bottom 10% for the

three neurodegenerative polygenic risk scores; these groups were compared on the cogni-

tive and physical health variables. Higher polygenic risk for AD, ALS, and FTD was associ-

ated with lower cognitive performance. Higher polygenic risk for FTD was also associated

with increased forced expiratory volume in 1s and peak expiratory flow. A significant group

difference was observed on the symbol digit substitution task between individuals with high

polygenic risk for FTD and high polygenic risk for ALS. The results suggest some overlap

between polygenic risk for neurodegenerative disorders, cognitive function and physical

health.

Introduction

Alzheimer’s disease (AD) is the most common form of dementia and it is expected that over

one million people in the UK will be diagnosed with this disease by 2025 [1]. Approximately

10% of individuals over the age of 65 have AD, increasing in prevalence with age [2].
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Pathological features of AD include amyloid B-plaques and neurofibrillary tangles [3], while

degeneration of subcortical hippocampal regions and the medial temporal lobes is associated

with the salient presenting memory impairment [4, 5].

Frontotemporal dementia (FTD), distinct from AD, is marked by degeneration of the fron-

tal and anterior temporal lobes. FTD is the second most prevalent presentation of early onset

dementia, accounting for approximately 3–26% of cases [6]. Behavioural variant FTD is the

most common phenotype, and is defined by behaviour change and executive dysfunction (e.g.,

impairments in working memory, cognitive flexibility, response generation, and social cogni-

tion), with relative sparing of episodic memory and visuospatial skills [7]. FTD shares genetic,

pathological, and neuropsychological overlap with Amyotrophic Lateral Sclerosis (ALS). ALS

is a neurodegenerative disease marked by progressive loss of motor neurons in the brain and

spinal cord, resulting in muscle wasting, spasticity, and death usually due to respiratory failure

within three years [8]. Approximately 35% of ALS patients will present with mild cognitive

and/or behavioural changes, of a similar nature to those seen in FTD, with an additional 15%

meeting diagnostic criteria for both ALS and FTD [9]. Similarly, approximately 40% of FTD

patients present with motor symptoms, and 15% meet ALS classification criteria [10].

The genetic aetiology of AD and FTD/ALS is heterogeneous. The APOE e4 allele is the

strongest risk factor for late onset AD; however, numerous additional candidate and suscepti-

bility loci have been established in recent years [11]. It has been suggested that late onset AD is

due to susceptibility at multiple loci, and due to genetic and environmental interactions [12].

Conversely, early onset AD is autosomal dominant, accounting for approximately 1–5% of all

cases, has been linked to variants in the APP, PSEN1, and PSEN2 genes [13]. Autosomal domi-

nant ALS accounts for approximately 5–10% of cases, with 85–90% of cases having no strong

genetic linkage [14]. Familial ALS has been linked to the SOD1, TARDBP, FUS, and more

recently NEK1 genes [15, 16]. FTD shows a positive family history in up to 40% of cases, with

mutations in the MAPT and GRN genes being amongst the most common [17]. The C9ORF72
mutation has been most frequently associated with familial ALS and FTD [18, 19] but can also

be found in sporadic forms of both diseases [20, 21], however the cause here is often unknown,

and possibly due to environmental-genetic linkages [15]. A genome-wide association study

(GWAS) of FTD [22] demonstrated that the C9ORF72 mutation mainly associates with the

ALS-FTD variant indicating a strong genetic overlap.

In addition to the genetic complexity, the cognitive profiles of AD and FTD/ALS are het-

erogeneous, in that impairments in executive functions, language, visuospatial skills, and

memory have been recorded in all three diseases [23]. Whereas evidence does exist that mem-

ory, visuospatial, and particularly language functions may be affected in FTD, the extent to

which executive dysfunction explains these observations remains unclear [24, 25]. Previous

research has suggested a preclinical phase of reduced cognitive functioning for older adults

who subsequently develop AD [26] and for those at genetic risk of developing AD [27–31],

with similar findings reported for FTD [32, 33]. Yet, not all those at genetic risk of developing

AD or FTD/ALS go on to develop the disease, and these findings may suggest that genetic car-

riers may be at risk of developing preclinical symptoms without necessarily developing the dis-

ease itself. Furthermore, the genetic aetiology of AD, ALS, and FTD is multifactorial, and a

significant proportion of genetic variance remains unexplained (that is, there is missing herita-

bility [34]).

As such, polygenic risk scores are becoming increasingly useful in the study of genetically

complex diseases. Polygenic risk scores are valuable in aggregating genetic markers that on

their own do not reach significance [35]. Higher polygenic risk for AD, based on genome-wide

significant single nucleotide polymorphisms (SNPs) [36] and all common SNPs [37], has been

associated with lower general cognitive ability and memory. Some research has suggested that
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healthy adults with a high polygenic risk for AD possess reduced brain cortical thickness [38].

Polygenic risk has been associated with cognitive performance in other diseases; for instance, a

high polygenic risk of schizophrenia has been associated with a greater decline in cognitive

functioning between childhood and older age [39], and reduced neural efficiency [40]. Simi-

larly, high polygenic risk for autism has been associated with better cognitive ability in the gen-

eral population [37, 41]. To date however, no identifiable research has explored whether

polygenic risk for FTD or ALS is associated with cognitive, muscle, or respiratory function.

As such, the aim of this study is to extend the work accomplished in AD to FTD/ALS, and

to further explore whether polygenic risk for AD, FTD, or ALS is associated with cognitive per-

formance, or with physical function measures known to be affected by motor neuron

degeneration.

Materials and methods

Sample

This study includes baseline data and data from a web-based cognitive follow-up from the UK

Biobank study, a large resource for identifying determinants of human diseases in middle aged

and older healthy individuals (http://www.ukbiobank.ac.uk) [42]. A total 502,655 community-

dwelling participants aged between 37 and 73 years were recruited between 2006 and 2010 in

the United Kingdom, and underwent extensive baseline testing including cognitive and physi-

cal assessments. All participants provided blood, urine and saliva samples for future analysis.

For the follow up testing, participants completed cognitive tests remotely via a web-based

assessment.

Measures

Cognitive measures. Cognitive ability was measured using five different cognitive tests.

These included tests of verbal-numerical reasoning (n = 36,035), reaction time (n = 111,484),

memory (n = 112,067), trail making (part A: n = 23,822, part B: n = 23,812), and symbol digit

substitution (n = 26,913). The verbal-numerical reasoning test consisted of a 13-item question-

naire assessing verbal and arithmetical deduction (Cronbach α reliability of 0.62). Reaction

time was measured using a computerized ‘Snap game’, during which participants were asked

to press a button as quickly as possible when two cards on the screen were matching. There

were eight trials, four had matching cards and required the button to be pressed (Cronbach α
reliability of 0.85). Memory was measured using a pairs matching test, where participants were

asked to memorize positions of matching pairs of cards, shown for 5s on a 3 by 4 grid. All

cards were then placed face down and the participant had to identify the positions of the

matching pairs as quickly as possible. The number of errors in this task was used as the

(inverse) measure of memory ability. These tests have been previously described in more detail

by Hagenaars et al. (2016)[37]. Executive functioning was measured using the trail making test

parts A (TMT A) and B (TMT B), which were part of the follow up testing wave in UK Bio-

bank, between 2014 and 2015. For TMT A, participants were instructed to connect numbers

consecutively (which were quasi-randomly distributed on the touchscreen) as quickly as possi-

ble in ascending order by selecting the next number. TMT B is similar, but in this case letters

and numbers had to be selected in alternating ascending order, e.g. 1 A 2 B 3 C etc. The differ-

ence between the raw scores for TMT A and TMT B was computed as TMT B minus TMT A

(TMT B-A). Owing to positively skewed distributions, both TMT A and TMT B scores were

log-transformed prior to further analyses. Further detail on these tests in UK Biobank has

been published previously [43]. Processing speed was measured using the symbol digit substi-

tution test, similar to the well-validated Symbol Digits Modalities Test [44], which was also
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part of the follow up testing wave. In the UK Biobank symbol digit substitution test, partici-

pants are presented with symbols paired with digits and are asked to enter the digits that are

paired with the symbols in the empty spaces. The score for processing speed was based on the

number of correctly matched symbols. Participants who scored 0 (n = 61) or above 40 (n = 3)

were removed from further analyses, as they scored more than 4 SD away from the mean.

Physical measures. Muscle weakening and respiratory dysfunction are physical symp-

toms characteristic of ALS and in a proportion of FTD patients. Muscle strength was measured

via hand grip strength for both the right and left hand, using a Jamar J00105 hydraulic hand

dynamometer. Participants were seated upright in a chair with their forearms on the armrests,

and were asked to squeeze the handle of the dynamometer as strongly as possible for three sec-

onds. The maximum grip strength for each hand was measured in whole kilogram force units.

This study used maximum grip strength based on the dominant hand, as indicated by the

participant.

Lung (respiratory) function was assessed using a Vitalograph Pneumotract 6800 spirome-

ter. Participants were asked to record two to three blows, lasting for at least 6 seconds, within a

period of 6 minutes. The following outcomes measures were calculated by the computer:

forced expiratory volume in 1s (FEV1), forced vital capacity (FVC), and peak expiratory flow

(PEF). FEV1 is the amount of air, in litres, that is forcibly exhaled in 1 second following full

inspiration. FVC is the amount of air, in litres, that is exhaled followed full inspiration. PEF is

the maximum speed of exhalation following full inspiration. All three measures were standard-

ized and individuals with a Z-score > 4 were excluded from FEV1 (n = 47), FVC (n = 73), and

PEF (n = 28).

Genotyping and quality control

The interim release of UK Biobank included genotype data for 152,729 individuals, of whom

49,979 were genotyped using the UK BiLEVE array and 102,750 using the UK Biobank axiom

array. These arrays have over 95% content in common. Quality control was performed by

Affymetrix, the Wellcome Trust Centre for Human Genetics, and by the present authors; this

included removal of participants based on missingness, relatedness, gender mismatch, and

non-British ancestry. We only included individuals of White British ancestry to reduce popu-

lation stratification and the other ethnic groups were underpowered on their own to detect

effects. British ancestry was defined as individuals who both self-identified as White British

and were confirmed as ancestrally White British using principal components analyses (PCA)

of genome-wide genetic information, this information was provided by UK Biobank. Further

details have been published elsewhere [37, 45]. Variants with a minor allele frequency of less

than 0.01 and non-autosomal variants were excluded from further analysis. A sample of

112,151 individuals available for further analysis remained after quality control.

Polygenic risk scores

The UK Biobank genotyping data required recoding from numeric (1, 2) allele coding to stan-

dard ACGT format before being used in polygenic profile scoring analyses, this was done

using a bespoke program [37]. Polygenic risk scores were created for AD [11], ALS [21], FTD,

[22] in all genotyped participants using PRSice software [46]. PRSice calculates the sum of

alleles associated with the phenotype of interest across many genetic loci, weighted by their

effect sizes estimated from a GWAS of the corresponding phenotype in an independent sam-

ple. The GWAS summary statistics for AD, ALS, and FTD were used as the training (base)

dataset, while UK Biobank was used as the prediction (target) dataset. Clumping was used to

obtain SNPs in linkage disequilibrium with an r2< 0.25 within a 250kb window. Five

Genetic overlap between neurodegenerative disease, cognitive ability and physical function
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polygenic risk scores were then created for the three phenotypes (AD, ALS, FTD) containing

SNPs selected according to the significance of their association with the phenotype, at thresh-

olds of p< 0.01, p< 0.05, p< 0.1, p< 0.5, and all SNPs. Polygenic risk scores were also cre-

ated for AD excluding SNPs within a 500 kb window of apolipoprotein E (APOE) gene.

Statistical analysis

All statistical analyses were performed in R version 3.4.0 [47]. The associations between the

polygenic profiles and the target phenotype were examined in regression models, adjusting for

age at measurement, sex, genotyping batch and array, assessment centre, and the first 10

genetic principal components to adjust for population stratification. The models including

measures of lung function (FEV1, FVC, PEF) were also adjusted for smoking status and height,

whereas the models for grip strength were additionally adjusted for height and weight. All

models were corrected for multiple testing using the false discovery rate method [48].

Following calculation of each participant’s polygenic risk score at each of the above-men-

tioned thresholds, participants were classified in terms of their high or low polygenic risk for

each neurodegenerative disease (AD, ALS and FTD). High risk was defined by the participant’s

polygenic risk score falling within the top 10th percentile and low risk was defined by the par-

ticipant’s polygenic risk score falling within the bottom 10th percentile for any of the neurode-

generative diseases. These participants were then grouped based on High Risk for AD (top

10th percentile for AD and bottom 10th percentiles for ALS and FTD), High Risk for ALS (top

10th percentile for ALS and bottom 10th percentiles for AD and FTD) and High Risk for FTD

(top 10th percentile for FTD and bottom 10th percentiles for ALS and AD) to homogenise

pure polygenic risk for each neurodegenerative disease in these groups. There were no overlap-

ping participants in each of these groups. These High Risk for AD, High Risk for ALS and

High Risk for FTD groups were compared on cognitive and physical variables (chosen based

on significant polygenic profile-target phenotype regression models from the previous analy-

sis). Shapiro-Wilk tests were used to assess normality of the data, following which group com-

parisons were performed either using Kruskal-Wallis H or ANOVA tests on cognitive and

physical variables, applying a Holm-Bonferroni correction. Significant Kruskal-Wallis H or

ANOVA results were followed up with post hoc tests (Mann Whitney U tests, or Tukey’s Hon-

est Significant Differences, respectively), where effect size was estimated using Cohen’s d.

Results

For the present study, genome-wide genotyping data was available for 112,151 individuals

(58,914 females), aged between 40 and 70 years (mean age = 56.9 years, SD = 7.93) after the

quality control process. Table 1 shows descriptive statistics for each of the measures used in

this study.

Polygenic risk analysis

The results for the polygenic risk analyses examining if polygenic risk for neurodegenerative

diseases is associated with cognitive ability and physical health, using the best threshold (larg-

est β), are shown in Table 2 and Fig 1. Full results including all five thresholds can be found in

S1 Table. Polygenic risk scores for AD significantly predicted verbal-numerical reasoning (β =

-0.023, p = 1.27 × 10−5) [37], memory (β = 0.011, p = 0.0001) [37], symbol digit substitution

(β = -0.015, p = 0.0065), and TMT B (β = 0.017, p = 0.0047). Thus, individuals with higher

polygenic risk for AD answered fewer verbal-numerical reasoning questions correctly, made

more errors on the memory task, completed fewer items on the symbol digit substitution test,

and took longer to complete TMT B. When excluding APOE from the AD polygenic risk

Genetic overlap between neurodegenerative disease, cognitive ability and physical function
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score, the associations with symbol digit substitution attenuated to non-significance (S1

Table). Polygenic risk scores for ALS significantly predicted verbal-numerical reasoning (β =

-0.019, p = 0.0004). Individuals with higher polygenic risk for ALS had lower scores on verbal-

numerical reasoning. Polygenic risk scores for FTD significantly predicted TMT B (β = 0.017,

p = 0.0041), FEV1 (β = 0.007, p = 0.0012), and PEF (β = 0.011, p = 4.77 × 10−6). Those with

higher polygenic risk for FTD took longer to complete TMT B and had higher FEV1 and PEF

scores. The associations between all scores at each threshold are shown in S2 Table.

Table 1. Descriptive statistics for cognitive and physical function measures in UK Biobank.

N mean (SD)

Baseline cognitive tests

Verbal-numerical reasoning 36,035 6.16 (2.10)

Reaction time (time in ms) 111,483 555.10 (112.62)

Memory (errors) 112,067 4.06 (3.02)

Follow-up cognitive tests

Symbol digit substitution (correct matches) 26,913 19.74 (5.13)

Trail making part A (time in s) 23,822 39.11 (14.73)

Trail making part B (time in s) 23,812 66.44 (24.89)

Trail making part B–part A (time in s) 23,769 27.22 (18.89)

Physical function

Grip strength (in kg) 111,735 32.17 (11.35)

Forced expiratory volume in 1s (in litres) 104,722 2.79 (0.81)

Peak expiratory volume (in litres/min) 104,741 389.20 (135.42)

Forced vital capacity (in litres) 104,696 3.71 (1.01)

Demographics

Age at baseline (in years) 112,151 56.91 (7.93)

Age at follow-up (in years) 27,429 63.00 (7.61)

Gender, female N (%) 112,151 58,914 (52.53)

College degree obtained, yes (%) 112,151 33,852 (30.20)

https://doi.org/10.1371/journal.pone.0198187.t001

Table 2. Associations between polygenic risk scores for Alzheimer’s disease (FDR p-value� 0.018), amyotrophic lateral sclerosis (FDR p-value� 0.0024), and fron-

totemporal dementia (FDR p-value� 0.0041), and cognitive and physical measures controlling for age, sex, assessment centre, genotyping batch and array and 10

genetic principal components for population structure.

Alzheimer’s disease Amyotrophic lateral sclerosis Frontotemporal dementia

pT β p pT β p pT β p

Verbal-numerical reasoning 0.05 -0.0229 1.27 × 10−5� 0.05 -0.0188 0.0004 1 -0.0085 0.1036

Reaction time 0.5 0.0052 0.0700� 1 0.0023 0.4315 0.5 -0.0033 0.2489

Memory 0.1 0.0114 0.0001� 0.1 0.0080 0.0074 0.05 0.0053 0.0737

Symbol digit substitution 0.5 -0.0150 0.0065 0.01 -0.0063 0.2613 0.01 -0.0053 0.3316

Trail making part A 0.05 0.0144 0.0195 0.01 0.0087 0.1609 0.1 0.0104 0.0900

Trail making part B 0.5 0.0168 0.0047 0.1 0.0155 0.0101 0.1 0.0171 0.0041

Trail making part B-A 1 0.0104 0.0965 0.1 0.0166 0.0091 0.1 0.0093 0.1410

Grip strength 0.1 -0.0016 0.3963 0.01 0.0032 0.0997 0.05 0.0020 0.2911

Forced expiratory volume in 1s 1 -0.0027 0.2018 0.01 0.0022 0.3066 0.05 0.0068 0.0012

Peak expiratory flow 1 -0.0039 0.1159 0.01 0.0017 0.4943 0.1 0.0113 4.77 × 10−6

Forced vital capacity 1 -0.0014 0.4817 0.01 0.0019 0.3158 0.05 0.0027 0.1628

pT, polygenic risk score threshold for best model

�, previously published by Hagenaars et al., (2016) [37]

https://doi.org/10.1371/journal.pone.0198187.t002
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Polygenic inter-group comparison

Table 3 shows the comparison of polygenic risk groups on cognitive and physical variables.

There was no significant difference between those categorised as having high polygenic risk

for AD, ALS, or FTD on age or gender distribution. The only significant difference between

these groups was observed with one of the cognitive variables, specifically, symbol digit substi-

tution task. Follow up, post hoc analysis showed that participants with a high polygenic risk

for FTD performed significantly worse on the symbol digit substitution task when compared

to participants with a high polygenic risk for ALS (U = 396, p< 0.01, d = 0.85). No significant

differences were observed between other groups on cognitive and physical variables.

Discussion

The present study aimed to explore whether polygenic risk for AD, FTD, or ALS is associated

with cognitive performance, grip strength, or lung function measures. Using the large

Fig 1. Heat map of associations between the polygenic profile scores for neurodegenerative disease and cognitive ability and physical

health. Stronger associations are indicated by darker shades, red indicates a positive association, blue indicates a negative association. AD,

Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; TMT B-A, trail-making part B–part A; TMT B, trail

making part B; TMT A, trail making part A; DSS, digit symbol substitution; VNR, verbal numerical reasoning; FVC, forced vital capacity; PEF,

peak expiratory flow; FEV1, forced expiratory volume in 1s. �, significant association after FDR correction (p-value� 0.018 (AD), 0.024 (ALS),

or 0.0041 (FTD)). Full results can be found in S1 Table.

https://doi.org/10.1371/journal.pone.0198187.g001
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cognitive, physical and genotypic data available in the UK Biobank, in concordance with the

most up to date GWAS consortia of neurodegenerative disease (AD, ALS and FTD), our

results showed a novel relationship between cognitive and physical function variables and

polygenic risk for neurodegenerative conditions in a healthy population, particularly in the

case of AD.

The findings of this study demonstrate that higher polygenic risk of AD is associated with

numerous cognitive functions; specifically, reduced performance in verbal-numerical reason-

ing, memory, processing speed (symbol digit substitution), and executive functioning (TMT

B). Sensitivity analysis indicated that the association between AD and cognitive ability (except

symbol digit substitution) was not driven by the APOE gene. Although an association between

polygenic risk of AD and cognitive ability–that is significant associations with verbal-numeric

reasoning and memory—in UK Biobank have been reported previously [37], the present study

extends these findings to measures of executive functioning and processing speed. Unlike AD,

higher polygenic risk for ALS demonstrated only one significant relationship with cognitive

function, namely verbal-numerical reasoning. Higher polygenic risk for FTD was only associ-

ated with reduced performance on the TMT B.

Physical function measures used in this study were chosen based on their relevance in clini-

cal cases of FTD and ALS, in particular, measures of grip strength and lung function. Counter-

intuitively higher risk of FTD was related to better respiratory functioning (FEV1 and PEF).

Finally, a higher risk of ALS was not associated with grip strength or measures of lung func-

tion. It is worth noting, however, that the amount of variance explained by the polygenic risk

scores was very small (< 0.01%). As such, these finding may be spurious.

In a small subset of participants, those with a high polygenic risk for FTD performed worse

on a processing speed task (symbol digit substitution task) compared to those with high poly-

genic risk for ALS. There has been an emphasis on linkage and continuum-based relationship

Table 3. Cognitive and physical variable comparison between high Alzheimer’s disease (AD) polygenic risk, amyotrophic lateral sclerosis (ALS) polygenic risk, and

frontotemporal dementia (FTD) polygenic risk, N for each group is shown.

High Risk AD High Risk ALS High Risk FTD p-value

Age 56.93 ± 7.81

(n = 389)

57.24 ± 7.75

(n = 386)

57.07 ± 7.95

(n = 343)

0.86

Gender (M/F) 179/210 188/198 157/186 0.67

Cognitive

Trail making part B‡ 4.10 ± 0.34

(n = 27)

4.05 ± 0.40

(n = 25)

4.15 ± 0.24

(n = 17)

1.00†

Verbal-numerical reasoning 6.50 ± 2.40

(n = 28)

6.22 ± 1.91

(n = 40)

6.42 ± 2.02

(n = 24)

1.00†

Memory 4.12 ± 3.26

(n = 107)

4.09 ± 2.98

(n = 112)

3.72 ± 2.73

(n = 103)

1.00†

Symbol digit substitution 19.77 ± 5.59

(n = 30)

22.16 ± 5.47

(n = 25)

17.57 ± 5.34

(n = 21)

0.04†

Physical

FEV1 2.78 ± 0.70

(n = 112)

2.84 ± 0.84

(n = 93)

2.66 ± 0.72

(n = 84)

0.62†

PEF 383.09 ± 124.25

(n = 92)

398.06 ± 138.79

(n = 101)

394.27 ± 125.92

(n = 96)

0.62†

‡Log transformed

†Kruskal-Wallis H test; Chi Squared tests used for gender distribution comparison; Mean ± Standard Deviation shown for each high neurodegenerative disease

polygenic risk group; bold text indicate significance adjusted for multiple comparisons (Holm-Bonferroni)

https://doi.org/10.1371/journal.pone.0198187.t003
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between ALS and FTD, this finding based on pure genetic risk could provide insight towards

sub-clinical cognitive impairment. The cognitive profile of ALS largely mirrors that of FTD,

albeit in a milder form. Patients with FTD have demonstrated processing speed impairments,

both cross-sectionally and longitudinally [49, 50]. However, studies of cognition in ALS have

largely ignored tasks of processing speed due to the confounding presence of motor

impairment in this patient group. That said, current research suggests unaffected processing

speed in patients with ALS. As such, previous research combined with the findings herein may

suggest a future avenue for detecting FTD syndromes in patients with ALS. However, further

studies are needed to explore the reliability of differences between polygenic risk of FTD and

ALS, and between people diagnosed with these diseases.

There are several limitations to note regarding the present study. While the cognitive tasks

in the present study covered a number of domains, the measures are brief and non-standard-

ized. As such, the sensitivity to detect small differences in cognitive ability are limited. Addi-

tionally, due to the nature of self-administration on a computer (in case of the measures for

the symbol digit substitution test and the trail making test), the environment under which the

tasks are performed could not be fully standardised. The trail making test could be confounded

by the movement speed in older individuals, however subtracting completion time for TMT A

from TMT B completion time (TMT B-A) will partially allow the relative contributions of

movement speed to be parsed from the more complex executive functions in TMT B. Finally, a

limitation is that the polygenic inter-group comparison yielded smaller sample sizes, which

could be indicative of the rarity of ‘pure’ polygenic risk for each disease in healthy adults. The

results in this area should therefore be interpreted with caution and require larger scale repli-

cation, despite building on previous research of a smaller sample size [49, 50].

Furthermore, while it is interesting to speculate how the findings of the present study may

relate to those individuals who actually have AD, FTD, or ALS, it is important to remember

that the participants of this study were healthy individuals. Those described as high polygenic

risk for a particular disease are only at higher risk when compared to other participants of this

study. It would be incorrect to describe these individuals as being at a high risk of developing a

neurodegenerative disease more generally.

Future research may explore whether these findings replicate given more extensive and con-

trolled measures of cognitive functioning. Provided that FTD is primarily a disease marked by

changes in behaviour, the inclusion of such measures would be informative. Additionally, as pre-

vious research has suggested that reduction of cortical thickness was associated with polygenic

risk for AD in healthy adults [38], it would be informative to further explore the neural correlates

of polygenic risk for different neurodegenerative disorders (e.g. ALS and FTD) in this sample.

Conclusion

The present study confirmed and extended previous findings that polygenic risk for AD is asso-

ciated with multi-domain cognitive functioning in healthy adults. Additionally, the findings of

this study demonstrate that polygenic risk for ALS is associated with verbal-numeric reasoning,

while polygenic risk for FTD was associated with executive functioning. Physical function mea-

sures commonly affected in patients with ALS, were not associated with polygenic risk of ALS

in healthy adults. However, higher polygenic risk significantly predicted better lung function.
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