332 research outputs found
Application of the Spectral Structure Parameterization technique: retrieval of total water vapor columns from GOME
International audienceWe use a recently proposed spectral sampling technique for measurements of atmospheric transmissions called the Spectral Structure Parameterization (SSP) in order to retrieve total water vapor columns (WVC) from reflectivity spectra measured by the Global Ozone Monitoring Experiment (GOME). SSP provides a good compromise between efficiency and speed when performing retrievals on highly structured spectra of narrow-band absorbers like water vapor. We show that SSP can be implemented in a radiative transfer scheme which treats both direct-path absorption and absorption by singly-scattered light directly. For the retrieval we exploit a ro-vibrational overtone band of water vapor located in the visible around 590 nm. We compare our results to independent values given by the data assimilation model of ECMWF. In addition, results are compared to those obtained from the more accurate, but more computationally expensive, Optical Absorption Coefficient Spectroscopy (OACS)
Reproductive health in adults with congenital heart disease:a review on fertility, sexual health, assisted reproductive technology and contraception
Introduction: Due to the improved survival in individuals with congenital heart disease (CHD), considering their reproductive health has become more important. Currently, this topic is still underexplored. Areas covered: We discuss fertility, sexuality, assisted reproductive technology (ART), and contraception in adults with CHD. Expert opinion: Timely counseling regarding fertility, sexuality, pregnancy, and contraception is necessary, preferably during teenage years. Due to a lack of data, whether or not to perform ART in adults with CHD is almost always based on expert opinion and follow-up in an expert center is recommended. Future research is necessary to fill the gaps in knowledge on the risks and frequency of complications of ART in adults with CHD, but also to be able to differentiate the relative risks in the different types of CHD. Only then will we be able to counsel adults with CHD correctly and not unjustly deprive someone of a chance of pregnancy.</p
A versatile, compartmentalised gut-on-a-chip system for pharmacological and toxicological analyses
A novel, integrated, in vitro gastrointestinal (GI) system is presented to study oral bioavailability parameters of small molecules. Three compartments were combined into one hyphenated, flow-through set-up. In the first compartment, a compound was exposed dynamically to enzymatic digestion in three consecutive microreactors, mimicking the processes of the mouth, stomach, and intestine. The resulting solution (chyme) continued to the second compartment, a flow-through barrier model of the intestinal epithelium allowing absorption of the compound and metabolites thereof. The composition of the effluents from the barrier model were analysed either offline by electrospray-ionisation-mass spectrometry (ESI-MS), or online in the final compartment using chip-based ESI-MS. Two model drugs, omeprazole and verapamil, were used to test the integrated model. Omeprazole was shown to be broken down upon treatment with gastric acid, but reached the cell barrier unharmed when introduced to the system in a manner emulating an enteric-coated formulation. In contrast, verapamil was unaffected by digestion. Finally, a reduced uptake of verapamil was observed when verapamil was introduced to the system dissolved in apple juice, a simple food matrix. It is envisaged that this integrated, compartmentalised GI system has potential for enabling future research in the fields of pharmacology, toxicology, and nutrition
Terahertz imaging and spectroscopy of large-area single-layer graphene
We demonstrate terahertz (THz) imaging and spectroscopy of a 15x15-mm^2
single-layer graphene film on Si using broadband THz pulses. The THz images
clearly map out the THz carrier dynamics of the graphene-on-Si sample, allowing
us to measure sheet conductivity with sub-mm resolution without fabricating
electrodes. The THz carrier dynamics are dominated by intraband transitions and
the THz-induced electron motion is characterized by a flat spectral response. A
theoretical analysis based on the Fresnel coefficients for a metallic thin film
shows that the local sheet conductivity varies across the sample from {\sigma}s
= 1.7x10^-3 to 2.4x10^-3 {\Omega}^-1 (sheet resistance, {\rho}s = 420 - 590
{\Omega}/sq).Comment: 6 pages, 5 figure
Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression
A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.No sponso
Recommended from our members
High-Contrast Imaging of Graphene via Time-Domain Terahertz Spectroscopy
We demonstrate terahertz (THz) imaging and spectroscopy of single-layer graphene deposited on an intrinsic Si substrate using THz time-domain spectroscopy. A single-cycle THz pulse undergoes multiple internal reflections within the Si substrate, and the THz absorption by the graphene layer accumulates through the multiple interactions with the graphene/Si interface. We exploit the large absorption of the multiply reflected THz pulses to acquire high-contrast THz images of graphene. We obtain local sheet conductivity of the graphene layer analyzing the transmission data with thin-film Fresnel formula based on the Drude model.Keywords: Graphene, Time-domain spectroscopy, Multiple internal reflections, Terahertz imagin
Line Defects in Molybdenum Disulfide Layers
Layered molecular materials and especially MoS2 are already accepted as
promising candidates for nanoelectronics. In contrast to the bulk material, the
observed electron mobility in single-layer MoS2 is unexpectedly low. Here we
reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion
domains, where the layer changes its direction through a line defect. The line
defects are observed experimentally by atomic resolution TEM. The structures
were modeled and the stability and electronic properties of the defects were
calculated using quantum-mechanical calculations based on the
Density-Functional Tight-Binding method. The results of these calculations
indicate the occurrence of new states within the band gap of the semiconducting
MoS2. The most stable non-stoichiometric defect structures are observed
experimentally, one of which contains metallic Mo-Mo bonds and another one
bridging S atoms
Dirac electrons in graphene-based quantum wires and quantum dots
In this paper we analyse the electronic properties of Dirac electrons in
finite-size ribbons and in circular and hexagonal quantum dots made of
graphene.Comment: Contribution for J. Phys.: Cond. Mat. special issue on graphene
physic
Dimensionality of Carbon Nanomaterials Determines the Binding and Dynamics of Amyloidogenic Peptides: Multiscale Theoretical Simulations
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth
- …