7,899 research outputs found
Experimental limits of ghost diffraction: Popper’s thought experiment
Quantum ghost diffraction harnesses quantum correlations to record diffraction or interference features using photons that have never interacted with the diffractive element. By designing an optical system in which the diffraction pattern can be produced by double slits of variable width either through a conventional diffraction scheme or a ghost diffraction scheme, we can explore the transition between the case where ghost diffraction behaves as conventional diffraction and the case where it does not. For conventional diffraction the angular extent increases as the scale of the diffracting object is reduced. By contrast, we show that no matter how small the scale of the diffracting object, the angular extent of the ghost diffraction is limited (by the transverse extent of the spatial correlations between beams). Our study is an experimental realisation of Popper’s thought experiment on the validity of the Copenhagen interpretation of quantum mechanics. We discuss the implication of our results in this context and explain that it is compatible with, but not proof of, the Copenhagen interpretation
Multidimensional collaboration; reflections on action research in a clinical context
This paper reflects on the challenges and benefits of multidimensional collaboration in an action research study to evaluate and improve preoperative education for patients awaiting colorectal surgery. Three cycles of planning, acting,observing and reflecting were designed to evaluate practice and implement change in this interactive setting, calling for specific and distinct collaborations. Data collection includes: observing educational interactions; administering patient evaluation questionnaires; interviewing healthcare staff, patients and carers; patient and carer focus groups; and examining written and audiovisual educational materials. The study revolves around and depends on multi-dimensional collaborations. Reflecting on these collaborations highlights the diversity of perspectives held by all those engaged in the study and enhances the action research lessons. Successfully maintaining the collaborations recognises the need for negotiation, inclusivity, comprehension, brokerage,and problem-solving. Managing the potential tensions is crucial to the successful implementation of changes introduced to practice and thus has important implications for patients’ well-being. This paper describes the experiences from an action research project involving new and specific collaborations, focusing on a particular healthcare setting. It exemplifies the challenges of the collaborative action research process and examines how both researchers and practitioners might reflect on the translation of theory into educational practices within a hospital colorectal department. Despite its context-specific features, the reflections on the types of challenges faced and lessons learned provide implications for action researchers in diverse healthcare settings across the world
Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer
The Large Binocular Telescope Interferometer uses a near-infrared camera to
measure the optical path length variations between the two AO-corrected
apertures and provide high-angular resolution observations for all its science
channels (1.5-13 m). There is however a wavelength dependent component to
the atmospheric turbulence, which can introduce optical path length errors when
observing at a wavelength different from that of the fringe sensing camera.
Water vapor in particular is highly dispersive and its effect must be taken
into account for high-precision infrared interferometric observations as
described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this
paper, we describe the new sensing approach that has been developed at the LBT
to measure and monitor the optical path length fluctuations due to dry air and
water vapor separately. After reviewing the current performance of the system
for dry air seeing compensation, we present simultaneous H-, K-, and N-band
observations that illustrate the feasibility of our feedforward approach to
stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
High Spatial Resolution Thermal-Infrared Spectroscopy with ALES: Resolved Spectra of the Benchmark Brown Dwarf Binary HD 130948BC
We present 2.9-4.1 micron integral field spectroscopy of the L4+L4 brown
dwarf binary HD 130948BC, obtained with the Arizona Lenslets for Exoplanet
Spectroscopy (ALES) mode of the Large Binocular Telescope Interferometer
(LBTI). The HD 130948 system is a hierarchical triple system, in which the G2V
primary is joined by two co-orbiting brown dwarfs. By combining the age of the
system with the dynamical masses and luminosities of the substellar companions,
we can test evolutionary models of cool brown dwarfs and extra-solar giant
planets. Previous near-infrared studies suggest a disagreement between HD
130948BC luminosities and those derived from evolutionary models. We obtained
spatially-resolved, low-resolution (R~20) L-band spectra of HD 130948B and C to
extend the wavelength coverage into the thermal infrared. Jointly using JHK
photometry and ALES L-band spectra for HD 130948BC, we derive atmospheric
parameters that are consistent with parameters derived from evolutionary
models. We leverage the consistency of these atmospheric quantities to favor a
younger age (0.50 \pm 0.07 Gyr) of the system compared to the older age (0.79
\pm 0.22 Gyr) determined with gyrochronology in order to address the luminosity
discrepancy.Comment: 17 pages, 9 figures, Accepted to Ap
Video recording true single-photon double-slit interference
As normally used, no commercially available camera has a low-enough dark
noise to directly produce video recordings of double-slit interference at the
photon-by-photon level, because readout noise significantly contaminates or
overwhelms the signal. In this work, noise levels are significantly reduced by
turning on the camera only when the presence of a photon has been heralded by
the arrival, at an independent detector, of a time-correlated photon produced
via parametric down-conversion. This triggering scheme provides the improvement
required for direct video imaging of Young's double-slit experiment with single
photons, allowing clarified versions of this foundational demonstration.
Further, we introduce variations on this experiment aimed at promoting
discussion of the role spatial coherence plays in such a measurement. We also
emphasize complementary aspects of single-photon measurement, where imaging
yields (transverse) position information, while diffraction yields the
transverse momentum, and highlight the roles of transverse position and
momentum correlations between down-converted photons, including examples of
"ghost" imaging and diffraction. The videos can be accessed at
http://sun.iwu.edu/~gspaldin/SinglePhotonVideos.html online.Comment: 7 pages, 8 figure
Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography
Anterior temporal lobe resection is often complicated by superior quadrantic visual field deficits (VFDs). In some cases this can be severe enough to prohibit driving, even if a patient is free of seizures. These deficits are caused by damage to Meyer's loop of the optic radiation, which shows considerable heterogeneity in its anterior extent. This structure cannot be distinguished using clinical magnetic resonance imaging sequences. Diffusion tensor tractography is an advanced magnetic resonance imaging technique that enables the parcellation of white matter. Using seed voxels antero-lateral to the lateral geniculate nucleus, we applied this technique to 20 control subjects, and 21 postoperative patients. All patients had visual fields assessed with Goldmann perimetry at least three months after surgery. We measured the distance from the tip of Meyer's loop to the temporal pole and horn in all subjects. In addition, we measured the size of temporal lobe resection using postoperative T1-weighted images, and quantified VFDs. Nine patients suffered VFDs ranging from 22% to 87% of the contralateral superior quadrant. In patients, the range of distance from the tip of Meyer's loop to the temporal pole was 24–43 mm (mean 34 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –15 to +9 mm (mean 0 mm). In controls the range of distance from the tip of Meyer's loop to the temporal pole was 24–47 mm (mean 35 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –11 to +9 mm (mean 0 mm). Both quantitative and qualitative results were in accord with recent dissections of cadaveric brains, and analysis of postoperative VFDs and resection volumes. By applying a linear regression analysis we showed that both distance from the tip of Meyer's loop to the temporal pole and the size of resection were significant predictors of the postoperative VFDs. We conclude that there is considerable variation in the anterior extent of Meyer's loop. In view of this, diffusion tensor tractography of the optic radiation is a potentially useful method to assess an individual patient's risk of postoperative VFDs following anterior temporal lobe resection
The HOSTS Survey for Exozodiacal Dust: Preliminary results and future prospects
[abridged] The presence of large amounts of dust in the habitable zones of
nearby stars is a significant obstacle for future exo-Earth imaging missions.
We executed an N band nulling interferometric survey to determine the typical
amount of such exozodiacal dust around a sample of nearby main sequence stars.
The majority of our data have been analyzed and we present here an update of
our ongoing work. We find seven new N band excesses in addition to the high
confidence confirmation of three that were previously known. We find the first
detections around Sun-like stars and around stars without previously known
circumstellar dust. Our overall detection rate is 23%. The inferred occurrence
rate is comparable for early type and Sun-like stars, but decreases from 71%
[+11%/-20%] for stars with previously detected mid- to far-infrared excess to
11% [+9%/-4%] for stars without such excess, confirming earlier results at high
confidence. For completed observations on individual stars, our sensitivity is
five to ten times better than previous results. Assuming a lognormal luminosity
function of the dust, we find upper limits on the median dust level around all
stars without previously known mid to far infrared excess of 11.5 zodis at 95%
confidence level. The corresponding upper limit for Sun-like stars is 16 zodis.
An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a
corresponding limit of 7.5 zodis. We provide important new insights into the
occurrence rate and typical levels of habitable zone dust around main sequence
stars. Exploiting the full range of capabilities of the LBTI provides a
critical opportunity for the detailed characterization of a sample of
exozodiacal dust disks to understand the origin, distribution, and properties
of the dust.Comment: To appear in SPIE Astronomical Telescopes + Instrumentation 2018
proceedings. Some typos fixed, one reference adde
Collection and determinants of patient reported outcome measures in haemodialysis patients in Scotland
Background: Patient reported outcome measures (PROMs) can evaluate the quality of health in patients with established renal failure. There is limited experience of their use within national renal registries.Aim: To describe the Scottish Renal Registry’s (SRR) experience of collecting PROMS in the haemodialysis population and correlate PROMS to demographic and clinical parameters.Design: Retrospective observational cross-sectional study.Methods: Haemodialysis patients in Scotland were invited to complete the KDQOL™-36 questionnaire on the day of the annual SRR census in 2015 and 2016. Questionnaires were linked to census demographic and clinical variables.Results: In 2016 738 questionnaires were linked to census data (39% of prevalent haemodialysis population). Response rates differed with age (≥ 65 years 42%, < 65 years 36%) [χ2 p=0.006]; duration of renal replacement therapy (<1 year 46%, ≥1 < 5 years 38%, ≥ 5 years 33%) [χ2 p=0.002] and social class (Scottish Index of Multiple Deprivation (SIMD) Class 1 32%, Class 2 41%, Class 3 40%, Class 4 48%, Class 5 40%) [χ2 p<0.001]. There were significant differences in PROMs with age, SIMD quintile and primary renal diagnosis. Achieving a urea reduction ratio of >65% and dialysing through arteriovenous access were associated with significantly higher PROMs. PROMs were not affected by haemoglobin or phosphate concentration.Conclusions: Routine collection of PROMs is feasible and can identify potentially under-recognised and treatable determinants to quality of life. The association between attaining recommended standards of care and improved PROMs is striking. Individual and population-wide strategies are required to improve PROMs
Exoplanet science with the LBTI: instrument status and plans
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument
of the LBT designed for high-sensitivity, high-contrast, and high-resolution
infrared (1.5-13 m) imaging of nearby planetary systems. To carry out a
wide range of high-spatial resolution observations, it can combine the two
AO-corrected 8.4-m apertures of the LBT in various ways including direct
(non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging,
non-redundant aperture masking, and nulling interferometry. It also has
broadband, narrowband, and spectrally dispersed capabilities. In this paper, we
review the performance of these modes in terms of exoplanet science
capabilities and describe recent instrumental milestones such as first-light
Fizeau images (with the angular resolution of an equivalent 22.8-m telescope)
and deep interferometric nulling observations.Comment: 12 pages, 6 figures, Proc. SPI
Search for the Supersymmetric Partner of the Top-Quark in Collisions at
We report on a search for the supersymmetric partner of the top quark (stop)
produced in events using of
collisions at recorded with the Collider Detector at
Fermilab. In the case of a light stop squark, the decay of the top quark into
stop plus the lightest supersymmetric particle (LSP) could have a significant
branching ratio. The observed events are consistent with Standard Model production and decay. Hence, we set limits on the branching ratio of
the top quark decaying into stop plus LSP, excluding branching ratios above 45%
for a LSP mass up to 40 {\rm GeV/c}.Comment: 11 pages, 4 figure
- …
