4,572 research outputs found

    Barrier Paradox in the Klein Zone

    Get PDF
    We study the solutions for a one-dimensional electrostatic potential in the Dirac equation when the incoming wave packet exhibits the Klein paradox (pair production). With a barrier potential we demonstrate the existence of multiple reflections (and transmissions). The antiparticle solutions which are necessarily localized within the barrier region create new pairs with each reflection at the potential walls. Consequently we encounter a new paradox for the barrier because successive outgoing wave amplitudes grow geometrically.Comment: 10 page

    Investigating Biological Matter with Theoretical Nuclear Physics Methods

    Full text link
    The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.Comment: Prepared for the proceedings of the "XII Meeting on the Problems of Theoretical Nuclear Physics" (Cortona11

    On radio-bright Active Galactic Nuclei in a complete Spectroscopic Redshift Survey

    Get PDF
    Analysis of the frequency and physical properties of galaxies with star-formation and AGN activity in different environments in the local universe is a cornerstone for understanding structure formation and galaxy evolution. We have built a new multiwavelength catalog for galaxies in a complete redshift survey (the 15R Survey), gathering information on their H-alpha, R-band, radio, far-infrared, and X-ray emission, as well as their radio and optical morphologies, and have developed a classification scheme to compare different selection methods and to select accurately samples of radio emitting galaxies with AGN and star-forming activity. While alternative classification schemes do not lead to major differences for star-forming galaxies, we show that spectroscopic and photometric classifications of AGN lead to incomplete samples. In particular, a large population of AGN-containing galaxies with absorption-line spectra, and in many cases extended radio structures (jets, lobes), is missed in the standard Baldwin-Phillips-Terlevich emission-line classification of active galaxies. This missed class of objects accounts for roughly half of the radio AGN population. Similarly, for X-ray selected AGN in our sample, we find that absorption-line AGN account for half of the sample. Spectroscopically unremarkable, passive galaxies with AGN activity are not an exception, but the norm, and we show that although they exist in all environments, these systems preferentially reside in higher density regions. Because of the existence of this population, the fractional abundance of AGN increases with increasing density, in contrast to some published results based on emission-line AGN extracted from the 15R, Sloan and 2DF redshift surveys.Comment: 26 pages with 8 figures. Accepted for publication on the Astrophysical Journa

    Fermi-Walker gauge in 2+1 dimensional gravity.

    Get PDF
    It is shown that the Fermi-Walker gauge allows the general solution of determining the metric given the sources, in terms of simple quadratures. We treat the general stationary problem providing explicit solving formulas for the metric and explicit support conditions for the energy momentum tensor. The same type of solution is obtained for the time dependent problem with circular symmetry. In both cases the solutions are classified in terms of the invariants of the Wilson loops outside the sources. The Fermi-Walker gauge, due to its physical nature, allows to exploit the weak energy condition and in this connection it is proved that, both for open and closed universes with rotational invariance, the energy condition imply the total absence of closed time like curves. The extension of this theorem to the general stationary problem, in absence of rotational symmetry is considered. At present such extension is subject to some assumptions on the behavior of the determinant of the dreibein in this gauge. PACS number: 0420Comment: 28 pages, RevTex, no figure

    Pharmacology and clinical drug candidates in redox medicine

    Get PDF
    SIGNIFICANCE Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful. Recent Advances: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress. Several such enzymes and isoforms have been identified and linked to different pathologies. For some targets, the respective pharmacology is quite advanced, that is, up to late-stage clinical development or even on the market; for others, drugs are already in clinical use, although not for indications based on oxidative stress, and repurposing seems to be a viable option. CRITICAL ISSUES For all other targets, reliable preclinical validation and drug ability are key factors for any translation into the clinic. In this study, specific pharmacological agents with optimal pharmacokinetic profiles are still lacking. Moreover, these enzymes also serve largely unknown physiological functions and their inhibition may lead to unwanted side effects. FUTURE DIRECTIONS The current promising data based on new targets, drugs, and drug repurposing are mainly a result of academic efforts. With the availability of optimized compounds and coordinated efforts from academia and industry scientists, unambiguous validation and translation into proof-of-principle studies seem achievable in the very near future, possibly leading towards a new era of redox medicine

    A spatial model of autocatalytic reactions

    Full text link
    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles - membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for pre-biotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations, even when the number of constituents is quite large. These oscillations are spatio-temporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.Comment: Submitted to Phys. Rev.

    Qualitative Properties of the Dirac Equation in a Central Potential

    Get PDF
    The Dirac equation for a massive spin-1/2 field in a central potential V in three dimensions is studied without fixing a priori the functional form of V. The second-order equations for the radial parts of the spinor wave function are shown to involve a squared Dirac operator for the free case, whose essential self-adjointness is proved by using the Weyl limit point-limit circle criterion, and a `perturbation' resulting from the potential. One then finds that a potential of Coulomb type in the Dirac equation leads to a potential term in the above second-order equations which is not even infinitesimally form-bounded with respect to the free operator. Moreover, the conditions ensuring essential self-adjointness of the second-order operators in the interacting case are changed with respect to the free case, i.e. they are expressed by a majorization involving the parameter in the Coulomb potential and the angular momentum quantum number. The same methods are applied to the analysis of coupled eigenvalue equations when the anomalous magnetic moment of the electron is not neglected.Comment: 22 pages, plain Tex. In the final version, a section has been added, and the presentation has been improve

    N=2 supergravity models with stable de Sitter vacua

    Get PDF
    In the present talk I shall review the construction of N=2 supergravity models exhibiting stable de Sitter vacua. These solutions represent the first instance of stable backgrounds with positive cosmological constant in the framework of extended supergravities (N >=2). After briefly reviewing the role of de Sitter space--times in inflationary cosmology, I shall describe the main ingredients which were necessary for the construction of gauged N=2 supergravity models admitting stable solutions of this kind.Comment: Prepared for Workshop on the Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions, Leuven, Belgium, September 13-19 200

    Constructive algebraic renormalization of the abelian Higgs-Kibble model

    Get PDF
    We propose an algorithm, based on Algebraic Renormalization, that allows the restoration of Slavnov-Taylor invariance at every order of perturbation expansion for an anomaly-free BRS invariant gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman amplitudes evaluated at zero momentum (and derivatives of them). The approach is here discussed in the case of the abelian Higgs-Kibble model, where the zero momentum limit can be safely performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants and are chosen in order to simplify the calculation of the counterterms. In particular within this model all counterterms involving BRS external sources (anti-fields) can be put to zero with the exception of the fermion sector.Comment: Jul, 1998, 31 page

    Remarks upon the mass oscillation formulas

    Full text link
    The standard formula for mass oscillations is often based upon the approximation tLt \approx L and the hypotheses that neutrinos have been produced with a definite momentum pp or, alternatively, with definite energy EE. This represents an inconsistent scenario and gives an unjustified reduction by a factor of two in the mass oscillation formulas. Such an ambiguity has been a matter of speculations and mistakes in discussing flavour oscillations. We present a series of results and show how the problem of the factor two in the oscillation length is not a consequence of gedanken experiments, i.e. oscillations in time. The common velocity scenario yields the maximum simplicity.Comment: 9 pages, AMS-Te
    corecore