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We study the solutions for a one-dimensional electrostatic potential in the Dirac equation when the incoming
wave packet exhibits the Klein paradox (pair production). With a barrier potential we demonstrate the existence
of multiple reflections (and transmissions). The antiparticle solutions which are necessarily localized within the
barrier region create new pairs with each reflection at the potential walls. Consequently we encounter a new
“paradox” for the barrier because successive outgoing wave amplitudes grow geometrically.
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I. INTRODUCTION

In this paper, we consider two related one-dimensional
(electrostatic) square potentials: the step and barrier potential
within the Dirac equation. We shall analyze them for the case
when the incoming energy (energies for wave packets) are in
what we shall call the Klein zone, i.e., when E<Vy—m,
where V| is the step/barrier height and m is the particle mass.
This is the situation in which only oscillatory solutions exist
throughout and where the so called Klein paradox reigns for
the step [1].

They will be analyzed with use of the stationary plane
wave method [2-4]. However, when appropriate, we shall
also use wave packet arguments and terminology such as
group velocity, arrival times, etc. For brevity, we will not
recall here the underlying formalism of convolution integrals
or stationary phase methods. We hope that these switches
from time independent to time dependent viewpoints, even if
in the same sentence, will not lead to any confusion. Actu-
ally, this is quite a common practice and occurs, for example,
whenever two contributing plane wave solutions are referred
to individually as “incoming” and/or “outgoing.”

We start with the step potential by recalling in the next
section the arguments which lead to the Klein paradox, in
which the reflection probability is higher than the incoming
probability. This is really no longer a paradox since it is
universally interpreted as due to the creation of a particle-
antiparticle pair at the potential discontinuity [5-9]. For an
electrostatic potential the antiparticle “sees” a potential dip
where the particle sees a potential rise and vice versa [10,11].
This explains why oscillatory solutions appear in the plane
wave analysis both for free regions (zero potential) and non.
The below potential oscillatory solutions are thus identified
with physical (above potential) antiparticles. The antipar-
ticles will be shown to have energy —E over a potential of
-V, so that with respect to the potential free region they also
lie in a Klein zone, i.e., —E <0—-m since necessarily the rela-
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tivistic energy satisfied £>m. Even the alternative candidate
step solution in which the reflection probability is less than
the incoming probability can only be understood by pair
annihilation at the step. However, this solution necessarily
implies the existence of an incoming antiparticle in addition
to the incoming particle and thus is rejected because it vio-
lates the initial conditions assumed.

As for the barrier, a plane wave analysis yields only one
solution, that with the sum of the reflected and transmitted
probabilities (both positive) lower than the incoming prob-
ability [12,13]. Not only does this solution appear inconsis-
tent with the step result (Klein paradox) but it seems, to us,
not interpretable in terms of pair production and/or annihila-
tion. To try and understand the situation, we shall then apply
a procedure we have called the two step approach to the
barrier. We previously applied it to the above barrier diffu-
sion [14]. In that case it exemplified the presence of multiple
wave packets [15], due to multiple reflections, which only in
the limit of complete overlap reproduced the plane wave bar-
rier result and consequent resonance effects.

While the two step analysis guarantees consistency be-
tween the step and barrier because it uses the former for the
calculation of the latter, it will lead us to a new kind of
paradox. Any antiparticle created at either of the steps that
form the barrier will necessarily lie entrapped in the barrier
region (which it sees as a well). It will bounce back and forth
indefinitely. Since it also satisfies the Klein condition, it will
have a nonzero probability of creating antiparticle-particle
pairs at each reflection. This means that the density of anti-
particles in the well will grow at each reflection. A corre-
sponding geometric growth of the multiple reflected and
transmitted particle probabilities also occurs.

In the Appendix, we collect the relevant Dirac solutions
and define our conventions [16]. This is done in three dimen-
sions, although for our calculations we consider only one-
dimensional potentials along the z axis. We shall also assume
that the incoming spin is polarized along the same axis (i.e.,
a positive helicity eigenstate). Since all spin-flip terms can
readily be shown to be absent, we shall neglect them and this
will simplify our continuity equations. The Appendix also
contains the Dirac solutions in the presence of a nonzero, but
constant, potential which we will indeed use.
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In the next section we describe the solutions to the step
potential and in particular the Klein paradox. These demon-
strations can be found in numerous articles [5-9] and text-
books [10,11,16], but with an important proviso. The tradi-
tional approach uses “positive energy” (above-potential)
spinors under the step. We, on the contrary, employ the
below-potential solutions there. Nevertheless, the results for
probabilities turn out to be the same. In Sec. III, we present
our plane wave analysis of the barrier. We describe the dif-
ficulties of the interpretation of this solution in terms of pair
creation/annihilation. Section IV repeats this analysis but
with the two step method. An important revaluation of the
results of the previous section can then be made. We con-
clude in Sec. V with a resume of our results and a discussion
of the predicted unlimited growth of antiparticle and particle
wave packets densities.

II. THE SINGLE STEP

Our potential model is one-dimensional with the z axis
chosen as the privileged space direction. The potential is
chosen as

|4
11'){%‘11;{:-:%1“10»! E>Vy+m v
ToraL ° 0, 2<0, REGIONI,
RerLecTion] Vo —M<E<Vo+m V(z) =
__________________ Vo - 2m Vo, 2>0, REGIONII.
Bone. m<E<Vy—m
z

For the purpose of this paper, the energy of each plane wave
lies by assumption in the Klein zone E<Vy—m. We also
assume that the incoming wave is a positive helicity positive
energy solution. Ignoring, for simplicity, the spin flip terms
which can easily be shown not to exist [16], the reflected
wave is consequently a negative helicity (because of the
change in direction) outgoing particle. The solutions in the
free zone can thus be written as

Wi(z,1) = {u(l)(p;O)exp[ipz] + RuV(- p;0)

Xexp[— ipz]texp[— iEr], (1)
with
1
0
uWip:00=[ p |
E+m
0

and p=yVE?>-m?. By choice we use unnormalized spinors
which are equivalent to the convention of absorbing any nor-
malization factors into the coefficients 1, R, and 7. The re-
flection coefficient is R. The reflection probability is conse-
quently |R|%. It should be warned that some other authors use
instead the letter R for the reflection probability.

The solution under the step (see Appendix) can initially
be taken as either of two forms differing in the sign of the
momentum, not both because we expect there to be only one
outgoing wave in the region with z>0 in analogy with the
above step case. We shall consider them one at a time since
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it is by no means obvious which of them represents a physi-
cal outgoing (right moving) object. Consider first the u®
X (q;Vy)expligz] solution, with transmission coefficient T,

Wi(z.1) = Tu®(q; Vo)expligzlexp[ - iEt], (2)
where
9
|E - V0| +m
M(3)(Q§Vo) = 0 >
1
0

and g=+\/(E-V,)>—m?>.
Continuity at z=0 yields

q

l+R=———7"—T,
|E-Vo|+m
E+m
1-R=
r

We note that with our choice of spinors we have just two
equations in two unknowns and the fact that a solution to
these equations exists is confirmation, a posteriori, of the
absence of spin-flip. The solution is

Eem 2 (3)

E+ml-a’

a+1
R= and T=

with

a=(E = Vo| = m)(E = m)IN(|E = Vo| + m)(E + m).

Since we are in the Klein zone |E—Vy|>m and hence 1
> a>0. This means that R<-1 and that the reflection prob-
ability is |R|>>1, i.e., exceeds the incoming probability
(Klein paradox). The direct calculation of the transmitted
probability is not |7|> because we are in a region with a
different value of the potential to the incoming wave. The
transmitted probability is given by

9 (- v 21D (02
T ,v / ’0
|E—V0|| u (q 0)| E|u (]7 )|
__q E-m 4 2|E - V) EE+m
CE-Vo|E+m(1-a)?|E-Vy|+mp 2E
da
B (1—a)2=|R|2_ 1. (4)

The same result is obtained by using the traditional spinor
u" under the step [16]. This latter choice of spinor is for-
mally incorrect and has the unpleasant feature of containing
a denominator (E—V;)+m which tends to zero in the (anti-
particle) rest frame limit (limit of the Klein zone) when
[-E-(-=V;)]— m. However, it is just this vanishing denomi-
nator which inverts the “small component” with the “large
component” in the nonrelativistic situation, and consequently
yields the same results as that above.

Now, let us interpret the Klein paradox in physical terms.
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FIG. 1. Particle and antipar-
ticle viewpoints. The energy of
the “particle” is that of the incom-
ing particle, i.e., E. Since the anti-
particle sees a potential of -V, its

2 energy, say FE, must satisfy
[E,—(=Vy)]*=(E-Vy)?*  Conse-
quently, E,=—F.

Since the incoming particle is assumed charged (recall that
the potential is of an electrostatic nature) this means that the
reflected wave packet carries more charge than the incoming
one. Extra particle charge has been created at reflection.
Since charge is a conserved quantum number the wave
packet in the positive z region must be of opposite charge,
i.e., represent an antiparticle wave packet traveling above a
potential trough. It is a basic axiom of our interpretation that
the below barrier solutions cannot be particles, they must
represent antiparticles or “holes.” Hence, pair creation has
occurred, or more precisely has a probability of occurring.
What is more, the antiparticle wave packet must move to the
right since it must exist for all future times to guarantee
charge conservation [5-9].

Figure 1 shows the particle and antiparticle viewpoint.
The potential flips sign because the antiparticle’s charge is
opposite to that of the particle. The energy of the “particle”
represented by 1) is, by fiat, that of the incoming particle,
i.e., E. The “particle” lies under the potential V,,. The modu-
lus of its momentum is the expression for ¢ given above.
After reinterpretation as a physical antiparticle the magnitude
of its momentum must still be given by ¢. Since the antipar-
ticle sees a potential of -V, its energy, say E, must satisfy
[E,— (Vo) ?’=(E-V,)? from which we conclude therefore
that E,=—FE (see Fig. 1). This means that energy has been
conserved in the pair creation. Because this has occurred at a
potential boundary there is no threshold energy needed. A
similar interpretation occurs with the Klein-Gordon equation
[11]. However, there is a difficulty with the above interpre-
tation. A direct calculation of the group velocity of the below
potential “particle” solution yields,

This is negative because E<<V,. We can only reconcile this
result with a right-moving antiparticle by invoking the
Feynmann-Stuckelburg rule that below-barrier solutions
travel backward in time, whence dr<<0 and consequently
dz>0. The corresponding antiparticle wave function has dr
>0 as have all physical particles and hence must exhibit a
positive group velocity.

We take this opportunity to observe that the conventional
charge conjugate solution differs in its space-time structure
from that of the “particle” by an overall complex conjuga-
tion. This has no effect upon the calculation of the group
velocity. Thus the charge conjugate wave function cannot

represent correctly the antiparticle state (it would yield the
wrong sign for the group velocity) [17]. Another important
observation, even if obvious, is that to satisfy the continuity
equations we need at least three “touching” plane waves. Pair
creation in the absence of an incoming wave is not a solu-
tion.

Finally we consider, briefly, the alternative plane wave
solution under the step,

Wii(z.0) = T'u® (- q; Vo)exp[— igzlexp[— iEr].  (5)

This yields the following solution to the continuity equa-
tions:

E-m 2
— (6)
E+ma+1

a-1
R = and T’ =
a+1

with a given as above. Now |R’| <1 and part of the incom-
ing charge has been annihilated. Thus this below-barrier so-
lution must involve an incoming antiparticle from the right.
It is therefore inconsistent with the assumed initial boundary
conditions and is consequently rejected. It is the Klein para-
dox solution which is generally considered valid for the step.

III. THE PLANE WAVE BARRIER ANALYSIS

For the barrier,

0, z<0, region I,
V(z) =9 Vo, 0<z<I, regionlI,
0, z>1, region III.

We now derive the plane wave solution. In the left free re-
gion the incoming and reflected solutions yield the combined
wave function,

Vi(z,1) = {uV(p;0)explipz] + Rpu'" (- p;0)expl - ipz]}
Xexp[—iEt], (7)

with Ry the barrier reflection coefficient. The solutions “un-
der” the potential give

Wy(z,1) = {Au(q; Vo)expligz]
+ Bgu® (= g;Vo)exp[— igz]}exp[— iEr].  (8)

Such solutions represent right (Ag) and left (Bz) moving an-
tiparticles. The latter are now allowed as a consequence of
reflection at the second potential discontinuity. The solution
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in the free region beyond the barrier is given by a single
outgoing plane wave,

Wyy(z,1) = TpuV(p;0)explipzlexp[— iEr], 9)

with Ty the transmission coefficient.
The continuity conditions, best displayed in matrix form
are thus,

(1 1 )(1) /E+m<—a a)(AB)

1 —=1/\Ry) VE-m\' 1 1/\By/)’
—elal g7\ (A HE=Vol+m|1 )
( iql - l)( B) - ﬁ( )TBelpl,

e ") \Bpg |E-Vo|-m\a

where « is as defined in the previous section. The solutions
of these equations are straightforward,

2

o .
Rp=i sin(gl) Tge™"

o

and

ot +

. 1
Ty=e"P| cos(ql) +i sin(gl) |. (10)

o
Consequently, both reflected and transmitted probabilities are
positive and less than one (the incoming probability). Prob-
ability is conserved,

R+ |Tpl*=1. (11)

At first sight this solution seems perfectly acceptable and
even conventional as long as one does not try to interpret it
in physical terms, i.e., as long as one does not look into
region II. Notice that it is characterized by resonance phe-
nomena when the sine term in the denominator of 7 van-
ishes, in which cases the transmission probability becomes
unity. However, how can this solution be compatible with the
step analysis, and specifically with the Klein paradox. If the
barrier is extended indefinitely we should in some way tend
to the step solution and pair production. This is what occurs
for above barrier diffusion, albeit in a nontrivial manner. In
the above barrier case, multiple reflections occur for the bar-
rier whereas only a single reflection occurs for the step po-
tential [14]. Tt is the first reflected wave packet of the barrier
that coincides with the step result (including its instanta-
neous reflection). One could say that the subsequent wave
packets for the barrier exist but are delayed indefinitely as
the barrier length grows without limit. A long barrier (with
respect to the incoming packet width) thus reproduces the
step diffusion result for a finite time after impact of the in-
coming particle.

Let us try to interpret the results of this section. Since the
reflection probability is less than the incoming probability
particle charge in region I has decreased. Pair annihilation
has occurred at the origin discontinuity. The annihilating an-
tiparticle can only have come from pair creation at the sec-
ond discontinuity at a time previous to its annihilation.
Therefore the outgoing particle in region III had also to be
created at this earlier time. However, here we already have a
problem since the creation of a pair without an incoming
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TABLE I. The three reflection scenarios in the two step ap-
proach. The first line simply lists the step results. In brackets in
columns 3 and 4, we have indicated the regions in which the re-
flected and transmitted waves travel.

Discontinuity Incoming  Reflected Transmitted
point wave coefficient coefficient
a+1 E-m 2
I) — I S—

z=0 [—1I ()a—l n E+ml-a

a+l . E+m 2a .

2igl — T =7 ilgp)

2=l nom Ty W) e

a+1 E+m 2a
2=0 ren W ONET T,

contribution is incompatible with the step continuity equa-
tions as already noted in the previous section. Is the (first)
antiparticle produced at the first or second discontinuity? If it
were at first, coincident with the incoming particle, we would
have no problem with continuity, but we would have a prob-
lem with charge conservation since we are not in accordance
with the Klein paradox. If at the second discontinuity we
face the aforementioned violation of continuity, there is no
incoming particle in region IIL

In the following section we shall approach the barrier as a
two step process and consequently reinterpret the above re-
sults.

IV. THE TWO STEP APPROACH

The two step approach to the barrier actually involves the
calculation and the use of three step potentials. One is that
already calculated in Sec. II at z=0, for a left incoming par-
ticle, characterized by |R|> 1. Another is for a left incoming
antiparticle reflected from the potential discontinuity at z=I.
The third is for the reflected antiparticle impinging upon the
first potential discontinuity at the origin and hence arriving
from the right. Since these antiparticles are themselves in the
Klein zone for the potential well in which they are entrapped,
they also must exhibit |R|>1. At each reflection (be it of a
particle or antiparticle) pair creation occurs. Again it would
be more correct to say that a nonzero probability for pair
creation occurs. We have performed the calculation with the
below potential solution (instead of the antiparticle solution)
and a potential barrier throughout but the physical interpre-
tation is as we have just described. It is important to note that
pair creation occurs at each reflection and an outgoing wave
packet is associated with each pair production; at least as
long as the wave packet width is much smaller than the bar-
rier (well) width.

We quote in Table I, without demonstration, the three re-
flection scenarios just described. The build up of the total
reflected and transmitted coefficients is then straightforward.
The first few contributions to the reflection coefficient are
(R, is just the Klein paradox)
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a+1

R =——r,
e

4 +1) ..
= Lﬁebql’
(a-1)

B 4afa+1)3 digl
3= 5 e 3
(a=1)

The subsequent terms are obtained by multiplying by the

loop factor
+1\%
(Z_l) o2l (12)

This loop factor is simply the product of the antiparticle
reflection coefficient at z=0 by that at z=/ as can be seen
from the table. The increasing phase factor is essential for
yielding the exit times (calculated with the stationary phase
method) of the various wave packets (more about this later in
this section).

The transmitted coefficients are even simpler since all
terms are related by the loop factor (12). The first few terms
are

da

T, =— ———¢'aPl
" o(a-1)?
T,=— Me (3q- p)l
(a=1)*
4
1y == 3@t DT g
(a=1)°

The loop factor has a modulus greater than one, so that with
the exception of the first reflected wave the probabilities of
subsequent successive wave packets grow geometrically by

the factor
+1\4
(a ) (13)
a-—1

This growth factor in probability is just the fourth power of
the single step reflection coefficient (which is real and
greater than one). Both of the above series if summed di-
verge. However, it is interesting to note that if one does
formally sum them, then one exactly finds the Rz and Tp
coefficients of Sec. III,

a+1 da
RB= +

a+1\2 |
1 2igl ( ) 2igl
a—1 (a—1)2¢ 20{ a-1) ¢

2

-1 24
sin(gl)/ [cos(ql) +iZ

! sin(qn},
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4a a+1 "
i(g-p)l 2igl
(a- 1)2e ,% [( -1 ) ]

2
. +1
= e"”l/[cos(ql) + ia

TB=

sin(ql)] .

Since the reflected and transmitted series do not converge,
we must conclude that the expressions for Ry and T are not
physical. At most they encrypt the physical multiwave-
packets series. This is in contrast to what happens for the
above-barrier diffusion where |R| for the step is less than
one. Then for plane waves (infinite width wave packets) the
barrier results represent a physical limit and do indeed ex-
hibit resonance phenomena.

There is a problem with the above results. All exit times
except for the first reflected wave are negative. This is again
connected to time flow under the barrier, or alternatively be-
cause the antiparticle energy is —E and not E. In either case
the time dependent phase factor differs in region II from that
in the free regions. Strictly speaking the stationary plane
wave analysis breaks down because of this. Phase factors due
to the time dependent plane-wave phase must be taken into
account.

Fortunately, we do not need to repeat all our analysis be-
cause we know the antiparticle group velocity +q,/E, and
hence all exit times. These are of course positive with suc-
cessive times spaced by 2IE,/q,. This is exactly what is
obtained if we take ¢— —¢ in all the amplitudes. The prob-
ability predictions do not change.

V. CONCLUSIONS

We have presented in this work the Klein zone analysis
for the step and barrier. In our derivation, we have preferred
to use the below-potential “particle” solutions, i.e., the spinor
u®. This is not the traditional choice, where the u® spinor is
adopted both in the free and potential regions [5-8]. As we
have already noted in Sec. II, this traditional choice has the
unpleasant feature of containing, in the spinor ", a denomi-
nator which vanishes when E-Vy=—m (i.e., at the Klein
zone limit where the antiparticle is at rest). However, since
this vanishing denominator, in practice, inverts the small and
large nonrelativistic components, the two approaches are
compatible and give the same probabilities. We have also
observed that the barrier region solutions (specifically in
their space-time structure) cannot be the correct antiparticle
wave solutions because they have the wrong group velocity.
What is however even more surprising is the fact that by
simple charge conjugation of these wave functions this prob-
lem is not resolved, so even the charge conjugate solution
cannot be the correct antiparticle wave function. A similar
observation, but based upon different arguments, has been
given by Sakurai [17]. Fortunately, this is not an essential
question for our calculations and we have had no difficulty
or confusion when talking about the antiparticles and their
motion, because this is uniquely determined by charge con-
servation. However, it is a question which merits further
study.

The Klein paradox is characterized by pair production. As
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others have already noted this can be viewed (a posteriori) as
an anticipation of field theory [9]. The barrier plane wave
solutions seem, at first sight, not to exhibit the Klein para-
dox. Thus, of concern to us was the fact that there appeared
an inconsistency between the standard barrier result and a
two step calculation. It was also impossible to interpret the
plane wave barrier results in terms of pair creation. One of
our principal objectives in this work has been to confront
these two approaches. The two step (or more in general mul-
tiple step approach) is not a new idea. In previous applica-
tions it has been lauded as a effective calculational technique
[12,15]. We, on the other hand, have emphasized both here
and in a previous paper [14] its interpretation in terms of
multiple wave packets. In our previous work upon above
potential barrier diffusion, confirmation was also obtained
with the help of numerical calculations.

With the Klein paradox, our series solution, each term of
which represents a wave packet, is nonconvergent. The bar-
rier solution represents the formal sum of these series and it
is therefore nonphysical. We have also observed that the cor-
rect amplitudes are the complex conjugate of our listed re-
sults, however this has no effect upon any predicted prob-
abilities. If the barrier (well) width is much greater than the
wave packet widths, then each term in the series can be
studied separately. Each term yields a separate wave packet
and specific exit times. The first reflected wave (R)) is in-
stantaneously reflected. The first transmitted amplitude
(T,[g — —q]) exits at time IE,/q,. Subsequent reflected wave
packets emerge with intervals of 2/E,/q, and the same for
the transmitted wave packets. If we do not make a distinction
between reflected and transmitted waves, then a wave packet
emerges, in either direction, at intervals of [E/q,, the anti-
particle transit time across its potential well.

The most interesting features of our analysis are:

(1) Pair production occurs at zero energy cost.

(2) The antiparticles produced via pair production are
permanently trapped within the potential well (barrier) re-
gion. They lie in a Klein zone of their own.

(3) These localized antiparticles have a continuous en-
ergy spectrum. They are technically not “bound states” be-
cause their existence requires a dynamical process—pair
product—at each reflection. With the Dirac equation, we
must distinguish between static bound state solutions and
dynamic localized solutions. The former are present in the
tunneling zone.

(4) The correct amplitudes, with the correct exit times,
are those usually calculated by stationary plane wave analy-
sis with the substitution g — —q.

The barrier results (Rz[g——¢q] and T[g— —¢q]) are non-
physical since they imply the sum of a divergent series.
However, it is to be noted that the continual growth of anti-
particles within the barrier/well region is also a mathematical
abstraction. We expect that as the localized antiparticle den-
sity increases, a corresponding decrease in the barrier poten-
tial height V, occurs, i.e., an attractive space charge effect
should accrue. Such an effect was confirmed quantitatively
some time ago, within the Thomas Fermi approximation, in
the three-dimensional case, by Miiller and Rafelski [18].

The Dirac equation has had an incredible success rate
when its predictions are correctly interpreted. Its negative
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energy solutions lead to the prediction of antiparticles. Zitter-
bewegung is connected to the proven existence of the Dar-
win term in atomic physics. The Klein paradox predicts the
phenomenon of pair production. We can therefore hope that
dynamic localized energy spectra, connected to the geomet-
ric growth of periodic particle emissions, will be confirmed
experimentally.

APPENDIX

The Dirac equation in presence of an electrostatic poten-
tial A,=(A,0) reads [16]

(iy*d,—ey’Ag—m)¥(r,1) =0. (A1)
This equation can be rewritten as follows:
iatq,(r’t) = (HO + VO)\I,(r’t)7 (AZ)

where
H0=—iy0y~V+m)p and V0=€A0.

Here e denotes the charge of the particle (e=—|e| for the
electron). For a stationary solution W(r,r)«exp[—iEr], we
obtain

HO\I,(r,t) = (E - VO)\I’(I‘, t) (A3)
Using the Pauli-Dirac set of gamma matrices
1 0 0 o
= and y= ,
4 (0 —1 ) ’ (— o 0 )
the covariant normalized spinorial solutions uy are
X(1,2)
uy?(g: Vo) = (E - Vo +m) o4 12
E - VO +m
for E-Vy>m,
79 a2
T m——
ug g Vo) = (E= Vol +m)|  |E=Vol+m
X(l,2)
for E-Vy<-m, (A4)

where

(E-Vo)?—¢g*>=m? V= ((1) ) and @ <(1) )

Th . (1,2) (G4 .

e two sets of solutions u,, "~ and u, ", sometimes referred
to, imprecisely, as “positive” and “negative” solutions, are in
fact not determined by the sign of E, but by whether E
>Vy+m or E<V,—m. Hence, E may be fixed but the solu-
tions depend upon whether in any given region the energy is
above or below the potential. For each of the previous
spinors there are in general two separate solutions corre-
sponding to opposite momentum. In the text of this paper, we
employ the one-dimensional unnormalized spinors u,
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BARRIER PARADOX IN THE KLEIN ZONE

X(1,2)
M(l’z)(q;Vo) = q (1,2)
E- V() +m

for E—-Vy>m,

9  _ap
g V) =| T E= Vol +m”™
X(LZ)
for E—Vy<-—m. (A5)

PHYSICAL REVIEW A 73, 042107 (2006)

In free space, V=0, the above spinors become

X( 1,2)

M(1’2>(P;0) = P (1,2)
E+m

for E > m,

__P ¥
uBY(p:0)=| |E[+m
K12

for E<-m. (A6)
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