3,438 research outputs found

    Double Ionisation in R-Matrix Theory Using a 2-electron Outer Region

    Get PDF
    We have developed a two-electron outer region for use within R-matrix theory to describe double ionisation processes. The capability of this method is demonstrated for single-photon double ionisation of He in the photon energy region between 80 eV to 180 eV. The cross sections are in agreement with established data. The extended RMT method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionisation processes involving an intermediate He+^{+} state with n=2n=2.Comment: 5 pages, 4 figure

    Quasiclassical double photoionization from the 2^{1,3}S excited states of helium including shakeoff

    Full text link
    We account for the different symmetries of the 2^{1,3}S helium excited states in a quasiclassical description of the knockout mechanism augmented by a quantum shakeoff contribution. We are thus able to formulate the separate contribution of the knockout and shakeoff mechanisms for double photoionization for any excess energy from the 2^{1,3}S states. Photoionization ratios and singly differential cross sections calculated for the 2^{1,3}S excited states of helium are found to be in very good agreement with recent theoretical results.Comment: 9 pages, 5 figure

    Electron correlation and short-range dynamics in attosecond angular streaking

    Get PDF
    We employ the R matrix with time-dependence method to study attosecond angular streaking of F−. Using this negative ion, free of long-range Coulomb interactions, we elucidate the role of short-range electron correlation effects in an attoclock scheme. Through solution of the multielectron time-dependent Schrödinger equation, we aim to bridge the gap between experiments using multielectron targets, and one-electron theoretical approaches. We observe significant negative offset angles in the photoelectron momentum distributions, despite the short-range nature of the binding potential. We show that the offset angle is sensitive to the atomic structure description of the residual F atom. We also investigate the response of co- and counter-rotating electrons, and observe an angular separation in their emissio

    Use of partial-wave decomposition to identify resonant interference effects in the photoionization–excitation of argon

    Get PDF
    We have studied simultaneous photoionization and excitation of Ar in the range of incident photon energies between 36.00 and 36.36 eV, where the resonant production of doubly excited neutral Ar states imbedded in the ionization continuum is dominant. By measuring the relative Stokes parameters of the fluorescence from residual Ar+∗ (3p4 [3P] 4p) ions (2P1/2, 465.8 nm transition; 2P3/2, 476.5 nm; 2D3/2, 472.7 nm; 2D5/2, 488.0 nm; 4P5/2, 480.6 nm; 4D5/2, 514.5 nm) we demonstrate a technique for determining individual partial-wave cross sections in photoionizing collisions. This procedure is shown to be important in sorting out competing dynamical ionization mechanisms, particularly with regard to resonant production of intermediate doubly excited autoionizing states. Comparison with theoretical photoionization cross sections demonstrates that spin–orbit coupling between different states of Ar II needs to be accounted for in the calculations

    Time delay between photoemission from the 2p and 2s subshells of Neon

    Get PDF
    The R-Matrix incorporating Time (RMT) method is a new method for solving the time-dependent Schroedinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond XUV pulse. Time delays due to XUV pulses in the range 76-105 eV are presented. For an XUV pulse at the experimentally relevant 105.2 eV, we calculate the time delay to be 10.2 +/- 1.3 attoseconds, somewhat larger than estimated by other theoretical calculations, but still a factor two smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modelling correlated-electron dynamics within the neon atom and the residual Ne(+) ion. A time delay of 14.5 +/- 1.5 attoseconds was observed, compared to a 16.7 +/- 1.5 attosecond result using a single-configuration representation of the residual Ne(+) ion.Comment: 4 pages, 3 figures, 1 tabl

    R-matrix-with-time-dependence theory for ultrafast atomic processes in arbitrary light fields

    Get PDF
    We describe an ab initio and non-perturbative RR-matrix with time-dependence theory for ultrafast atomic processes in light fields of arbitrary polarization. The theory is applicable to complex, multielectron atoms and atomic ions subject to ultrashort (particularly few-femtosecond and attosecond) laser pulses with any given ellipticity, and generalizes previous time-dependent RR-matrix techniques restricted to linearly polarized fields. We discuss both the fundamental equations, required to propagate the multielectron wavefunction in time, as well as the computational developments necessary for their efficient numerical solution. To verify the accuracy of our approach, we investigate the two-photon ionization of He, irradiated by a pair of time-delayed, circularly polarized, femtosecond laser pulses, and compare photoelectron momentum distributions, in the polarization plane, with those obtained from recent time-dependent close-coupling calculations. The predictive capabilities of our approach are further demonstrated through a study of single-photon detachment from F−^{-} in a circularly polarized, femtosecond laser pulse, where the relative contribution of the co- and counter-rotating 2p2p electrons is quantified.Comment: 16 pages, 3 figure

    Three-photon detachment of electrons from the fluorine negative ion

    Get PDF
    Absolute three-photon detachment cross sections are calculated for the fluorine negative ion within the lowest-order perturbation theory. The Dyson equation of the atomic many-body theory is used to obtain the ground-state 2p wavefunction with correct asymptotic behaviour, corresponding to the true (experimental) binding energy. We show that in accordance with the adiabatic theory (Gribakin and Kuchiev 1997 {Phys. Rev. A} {\bf 55} 3760) this is crucial for obtaining absolute values of the multiphoton cross sections. Comparisons with other calculations and experimental data are presented.Comment: 10 pages, two figures, Latex, IOP styl

    Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest

    Get PDF
    We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests
    • 

    corecore