3,655 research outputs found

    Global Talentship: Toward a Decision Science Connecting Talent to Global Strategic Success

    Get PDF
    It is widely accepted that global competitive advantage frequently requires managing such complex situations that traditional organization and job structures are simply insufficient. Increasingly, in order to create a flexible and integrated set of decisions that balance local flexibility with global efficiency, organizations must rely on more social, informal and matrix-based shared visions among managers and employees. Research on global strategic advantage, global organizational structures, and even shared mindsets has suggested that dimensions of culture, product and function provide a valuable organizing framework. However, typical decisions about organization structure, HRM practices and talent often remain framed at such a high level as to preclude their solution. We maintain that there is often no logical answer to such questions as, “Should the sales force be local or global?” or “Should product authority rest with the countries or the corporate center?” However, we propose that embedding business processes or value chains within a Culture and Product matrix provides the necessary analytic detail to reveal otherwise elusive solutions. Moreover, by linking this global process matrix to a model that bridges strategy and talent, it is possible to identify global “pivotal talent pools,” and to target organizational and human resource investments toward those talent areas that have the greatest impact on strategic advantage. We demonstrate the Value-Chain, Culture and Product (VCCP) matrix using several examples, and discuss future research and practical implications, particularly for leadership and leadership development

    Quantum Technology: The Second Quantum Revolution

    Full text link
    We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including; quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.Comment: 24 pages and 6 figure

    Is there value in a two-step diagnostic algorithm to confirm SARS-CoV-2 in South Africa?

    Get PDF

    Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes.

    Get PDF
    Hybridization has been identified as a significant factor in the evolution of plants as groups of interbreeding species retain their phenotypic integrity despite gene exchange among forms. Recent studies have identified similar interactions in animals; however, the role of hybridization in the evolution of animals has been contested. Here we examine patterns of gene flow among four species of catostomid fishes from the Klamath and Rogue rivers using molecular and morphological traits. Catostomus rimiculus from the Rogue and Klamath basins represent a monophyletic group for nuclear and morphological traits; however, the Klamath form shares mtDNA lineages with other Klamath Basin species (C. snyderi, Chasmistes brevirostris, Deltistes luxatus). Within other Klamath Basin taxa, D. luxatus was largely fixed for alternate nuclear alleles relative to C. rimiculus, while Ch. brevirostris and C. snyderi exhibited a mixture of these alleles. Deltistes luxatus was the only Klamath Basin species that exhibited consistent covariation of nuclear and mitochondrial traits and was the primary source of mismatched mtDNA in Ch. brevirostris and C. snyderi, suggesting asymmetrical introgression into the latter species. In Upper Klamath Lake, D. luxatus spawning was more likely to overlap spatially and temporally with C. snyderi and Ch. brevirostris than either of those two with each other. The latter two species could not be distinguished with any molecular markers but were morphologically diagnosable in Upper Klamath Lake, where they were largely spatially and temporally segregated during spawning. We examine parallel evolution and syngameon hypotheses and conclude that observed patterns are most easily explained by introgressive hybridization among Klamath Basin catostomids

    Cold Atom Physics Using Ultra-Thin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    Get PDF
    The strong evanescent field around ultra-thin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold atom cloud, we investigate the interaction of a small number of cold Caesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.Comment: 4 pages, 4 figure

    On the Squeezed Number States and their Phase Space Representations

    Get PDF
    We compute the photon number distribution, the Q distribution function and the wave functions in the momentum and position representation for a single mode squeezed number state using generating functions which allow to obtain any matrix element in the squeezed number state representation from the matrix elements in the squeezed coherent state representation. For highly squeezed number states we discuss the previously unnoted oscillations which appear in the Q function. We also note that these oscillations can be related to the photon-number distribution oscillations and to the momentum representation of the wave function.Comment: 16 pages, 9 figure

    Entanglement of indistinguishable particles in condensed matter physics

    Get PDF
    The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently to other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor changes, added references

    Quantum reflection of atoms from a solid surface at normal incidence

    Full text link
    We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure

    Husimi's Q(α)Q(\alpha) function and quantum interference in phase space

    Full text link
    We discuss a phase space description of the photon number distribution of non classical states which is based on Husimi's Q(α)Q(\alpha) function and does not rely in the WKB approximation. We illustrate this approach using the examples of displaced number states and two photon coherent states and show it to provide an efficient method for computing and interpreting the photon number distribution . This result is interesting in particular for the two photon coherent states which, for high squeezing, have the probabilities of even and odd photon numbers oscillating independently.Comment: 15 pages, 12 figures, typos correcte

    Cumulative Effect of the Application of N and P Fertilizers on Soil Total and Labile Concentrations After 12 Cereal Crops on a Black Vertosol

    Get PDF
    Soil organic carbon is commonly used as a key indicator of sustainability of farming systems due to effects on nutrient availability, structural stability and its central role in soil biotic processes. Trends in total carbon content (CT) and lability of carbon (CL) in soil have been measured in a long-term nitrogen (N) x phosphorus (P) fertiliser experiment in continuous cereal cropping to assess the effect of increasing crop nutrient supply on soil carbon accretion and partitioning. Increasing N supply in each crop by 80 kg/ha or more was effective in creating significantly different total and labile carbon content
    • …
    corecore