2,095 research outputs found

    Long-term Properties of Accretion Disks in X-ray Binaries: II. Stability of Radiation-Driven Warping

    Full text link
    A significant number of X-ray binaries are now known to exhibit long-term ``superorbital'' periodicities on timescales of ∼\sim 10 - 100 days. Several physical mechanisms have been proposed that give rise to such periodicities, in particular warping and/or precession of the accretion disk. Recent theoretical work predicts the stability to disk warping of X-ray binaries as a function of the mass ratio, binary radius, viscosity and accretion efficiency, and here we examine the constraints that can be placed on such models by current observations. In paper I we used a dynamic power spectrum (DPS) analysis of long-term X-ray datasets (CGRO, RXTE), focusing on the remarkable, smooth variations in the superorbital period exhibited by SMC X-1. Here we use a similar DPS analysis to investigate the stability of the superorbital periodicities in the neutron star X-ray binaries Cyg X-2, LMC X-4 and Her X-1, and thereby confront stability predictions with observation. We find that the period and nature of superorbital variations in these sources is consistent with the predictions of warping theory. We also use a dynamic lightcurve analysis to examine the behaviour of Her X-1 as it enters and leaves the 1999 Anomalous Low State (ALS). This reveals a significant phase shift some 15 cycles before the ALS, which indicates a change in the disk structure or profile leading into the ALS.Comment: 12 pages, 14 figures, Re-submitted to MNRAS after referee's comment

    3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser

    No full text
    A beam-shaped 20W diode-bar has longitudinally pumped a Nd:YAG laser in a ring configuration. Unidirectional single-frequency operation is enforced by a Faraday rotator. Intracavity frequency doubling, using a KTP crystal has produced 3W of stable, single-frequency TEMoo output at 532nm

    A Chemical Composition Survey of the Iron-Complex Globular Cluster NGC 6273 (M 19)

    Get PDF
    Recent observations have shown that a growing number of the most massive Galactic globular clusters contain multiple populations of stars with different [Fe/H] and neutron-capture element abundances. NGC 6273 has only recently been recognized as a member of this "iron-complex" cluster class, and we provide here a chemical and kinematic analysis of > 300 red giant branch (RGB) and asymptotic giant branch (AGB) member stars using high resolution spectra obtained with the Magellan-M2FS and VLT-FLAMES instruments. Multiple lines of evidence indicate that NGC 6273 possesses an intrinsic metallicity spread that ranges from about [Fe/H] = -2 to -1 dex, and may include at least three populations with different [Fe/H] values. The three populations identified here contain separate first (Na/Al-poor) and second (Na/Al-rich) generation stars, but a Mg-Al anti-correlation may only be present in stars with [Fe/H] > -1.65. The strong correlation between [La/Eu] and [Fe/H] suggests that the s-process must have dominated the heavy element enrichment at higher metallicities. A small group of stars with low [alpha/Fe] is identified and may have been accreted from a former surrounding field star population. The cluster's large abundance variations are coupled with a complex, extended, and multimodal blue horizontal branch (HB). The HB morphology and chemical abundances suggest that NGC 6273 may have an origin that is similar to omega Cen and M 54.Comment: Accepted for Publication in The Astrophysical Journal; 50 pages; 18 figures; 8 tables; higher resolution figures are available upon request or in the published journal articl

    X-ray behaviour of Circinus X-1 - I: X-ray Dips as a diagnostic of periodic behaviour

    Full text link
    We examine the periodic nature of detailed structure (particularly dips) in the RXTE/ASM lightcurve of Circinus X-1. The significant phase wandering of the X-ray maxima suggests their identification with the response on a viscous timescale of the accretion disk to perturbation. We find that the X-ray dips provide a more accurate system clock than the maxima, and thus use these as indicators of the times of periastron passage. We fit a quadratic ephemeris to these dips, and find its predictive power for the X-ray lightcurve to be superior to ephemerides based on the radio flares and the full archival X-ray lightcurve. Under the hypothesis that the dips are tracers of the mass transfer rate from the donor, we use their occurrence rate as a function of orbital phase to explore the (as yet unconstrained) nature of the donor. The high PË™\dot{P} term in the ephemeris provides another piece of evidence that Cir X-1 is in a state of dynamical evolution, and thus is a very young post-supernova system. We further suggest that the radio ``synchrotron nebula'' immediately surrounding Cir X-1 is in fact the remnant of the event that created the compact object, and discuss briefly the evidence for and against such an interpretation.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    The Arches Cluster: Extended Structure and Tidal Radius

    Full text link
    At a projected distance of ~26 pc from Sgr A*, the Arches cluster provides insight to star formation in the extreme Galactic Center (GC) environment. Despite its importance, many key properties such as the cluster's internal structure and orbital history are not well known. We present an astrometric and photometric study of the outer region of the Arches cluster (R > 6.25") using HST WFC3IR. Using proper motions we calculate membership probabilities for stars down to F153M = 20 mag (~2.5 M_sun) over a 120" x 120" field of view, an area 144 times larger than previous astrometric studies of the cluster. We construct the radial profile of the Arches to a radius of 75" (~3 pc at 8 kpc), which can be well described by a single power law. From this profile we place a 3-sigma lower limit of 2.8 pc on the observed tidal radius, which is larger than the predicted tidal radius (1 - 2.5 pc). Evidence of mass segregation is observed throughout the cluster and no tidal tail structures are apparent along the orbital path. The absence of breaks in the profile suggests that the Arches has not likely experienced its closest approach to the GC between ~0.2 - 1 Myr ago. If accurate, this constraint indicates that the cluster is on a prograde orbit and is located front of the sky plane that intersects Sgr A*. However, further simulations of clusters in the GC potential are required to interpret the observed profile with more confidence.Comment: 24 pages (17-page main text, 7-page appendix), 24 figures, accepted to Ap

    A tree of linearisable second-order evolution equations by generalised hodograph transformations

    Full text link
    We present a list of (1+1)-dimensional second-order evolution equations all connected via a proposed generalised hodograph transformation, resulting in a tree of equations transformable to the linear second-order autonomous evolution equation. The list includes autonomous and nonautonomous equations.Comment: arXiv version is already officia

    The Quintuplet Cluster: Extended Structure and Tidal Radius

    Full text link
    The Quintuplet star cluster is one of only three known young (<10<10 Myr) massive (M >104>10^4 M⊙_\odot) clusters within ∼100\sim100 pc of the Galactic Center. In order to explore star cluster formation and evolution in this extreme environment, we analyze the Quintuplet's dynamical structure. Using the HST WFC3-IR instrument, we take astrometric and photometric observations of the Quintuplet covering a 120′′×120′′120''\times120'' field-of-view, which is 1919 times larger than those of previous proper motion studies of the Quintuplet. We generate a catalog of the Quintuplet region with multi-band, near-infrared photometry, proper motions, and cluster membership probabilities for 10,54310,543 stars. We present the radial density profile of 715715 candidate Quintuplet cluster members with M≳4.7M\gtrsim4.7 M⊙_\odot out to 3.23.2 pc from the cluster center. A 3σ3\sigma lower limit of 33 pc is placed on the tidal radius, indicating the lack of a tidal truncation within this radius range. Only weak evidence for mass segregation is found, in contrast to the strong mass segregation found in the Arches cluster, a second and slightly younger massive cluster near the Galactic Center. It is possible that tidal stripping hampers a mass segregation signature, though we find no evidence of spatial asymmetry. Assuming that the Arches and Quintuplet formed with comparable extent, our measurement of the Quintuplet's comparatively large core radius of 0.62−0.10+0.100.62^{+0.10}_{-0.10} pc provides strong empirical evidence that young massive clusters in the Galactic Center dissolve on a several Myr timescale.Comment: 25 pages (21-page main text, 4-page appendix), 18 figures, submitted to Ap

    SS433:the microquasar link with ULXs?

    Get PDF
    SS433 is the prototype microquasar in the Galaxy and may even be analogous to the ULX sources if the jets' kinetic energy is taken into account. However, in spite of 20 years of study, our constraints on the nature of the binary system are extremely limited as a result of the difficulty of locating spectral features that can reveal the nature and motion of the mass donor. Newly acquired, high resolution blue spectra taken when the (precessing) disc is edge-on suggest that the binary is close to a common-envelope phase, and hence providing kinematic constraints is extremely difficult. Nevertheless, we do find evidence for a massive donor, as expected for the inferred very high mass transfer rate, and we compare SS433's properties with those of Cyg X-3.Comment: 4 pages, 3 figures, to appear in "Compact binaries in the Galaxy and beyond
    • …
    corecore