30,953 research outputs found

    Liquid-gas Phase Transition in Strange Hadronic Matter with Weak Y-Y Interaction

    Full text link
    The liquid-gas phase transition in strange hadronic matter is reexamined by using the new parameters about the Λ−Λ\Lambda - \Lambda interaction deduced from recent observation of ΛΛ6He^{6}_{\Lambda\Lambda}He double hypernucleus. The extended Furnstahl-Serot-Tang model with nucleons and hyperons is utilized. The binodal surface, the limit pressure, the entropy, the specific heat capacity and the Caloric curves are addressed. We find that the liquid-gas phase transition can occur more easily in strange hadronic matter with weak Y-Y interaction than that of the strong Y-Y interaction.Comment: 10 pages, 7 figure

    Relationship between Thermodynamic Driving Force and One-Way Fluxes in Reversible Chemical Reactions

    Get PDF
    Chemical reaction systems operating in nonequilibrium open-system states arise in a great number of contexts, including the study of living organisms, in which chemical reactions, in general, are far from equilibrium. Here we introduce a theorem that relates forward and re-verse fluxes and free energy for any chemical process operating in a steady state. This rela-tionship, which is a generalization of equilibrium conditions to the case of a chemical process occurring in a nonequilibrium steady state, provides a novel equivalent definition for chemical reaction free energy. In addition, it is shown that previously unrelated theories introduced by Ussing and Hodgkin and Huxley for transport of ions across membranes, Hill for catalytic cycle fluxes, and Crooks for entropy production in microscopically reversible systems, are united in a common framework based on this relationship.Comment: 11 page

    Data Unfolding with Wiener-SVD Method

    Full text link
    Data unfolding is a common analysis technique used in HEP data analysis. Inspired by the deconvolution technique in the digital signal processing, a new unfolding technique based on the SVD technique and the well-known Wiener filter is introduced. The Wiener-SVD unfolding approach achieves the unfolding by maximizing the signal to noise ratios in the effective frequency domain given expectations of signal and noise and is free from regularization parameter. Through a couple examples, the pros and cons of the Wiener-SVD approach as well as the nature of the unfolded results are discussed.Comment: 26 pages, 12 figures, match the accepted version by JINS

    Resonant Conversion of Massless Neutrinos in Supernovae

    Get PDF
    It has been noted for a long time that, in some circumstances, {\sl massless} neutrinos may be {\sl mixed} in the leptonic charged current. Conventional neutrino oscillation searches in vacuum are insensitive to this mixing. We discuss the effects of resonant massless-neutrino conversions in the dense medium of a supernova. In particular, we show how the detected νˉe\bar\nu_e energy spectra from SN1987a and the supernova rr-process nucleosynthesis may be used to provide very stringent constraints on the mixing of {\sl massless} neutrinos.Comment: latex file, 20 pages, including 3 postscript figure

    Stochastic Physics, Complex Systems and Biology

    Full text link
    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.Comment: 10 page

    COMPUTER SIMULATION OF "SPLASH CONTROL IN COMPETITIVE DIVING

    Get PDF
    The purpose of the study was to examine the relationship between the hand pattern and the water splash height during a diver's entry using a computer simulation method. A physical and mathematical model of the impact of a wedged solid object with an ideal fluid was developed. The motion equation (interaction function of solid and fluid) of the solid was established with satisfaction of control functions and initial boundary conditions of the fluid. A finite element method was used to simulate the impact process, with the wedge angle changed from 4" to 80- during the impact. The results suggested that the fluid splash height is inversely proportional to the wedge angle. The "splash control" technique derived from the simulation was also applied in training professional divers and positive results were obtained

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73M⊙M_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table

    Half metallic digital ferromagnetic heterostructure composed of a δ\delta-doped layer of Mn in Si

    Get PDF
    We propose and investigate the properties of a digital ferromagnetic heterostructure (DFH) consisting of a δ\delta-doped layer of Mn in Si, using \textit{ab initio} electronic-structure methods. We find that (i) ferromagnetic order of the Mn layer is energetically favorable relative to antiferromagnetic, and (ii) the heterostructure is a two-dimensional half metallic system. The metallic behavior is contributed by three majority-spin bands originating from hybridized Mn-dd and nearest-neighbor Si-pp states, and the corresponding carriers are responsible for the ferromagnetic order in the Mn layer. The minority-spin channel has a calculated semiconducting gap of 0.25 eV. Analysis of the total and partial densities of states, band structure, Fermi surfaces and associated charge density reveals the marked two-dimensional nature of the half metallicity. The band lineup is found to be favorable for retaining the half metal character to near the Curie temperature (TCT_{C}). Being Si based and possibly having a high TCT_{C} as suggested by an experiment on dilutely doped Mn in Si, the heterostructure may be of special interest for integration into mature Si technologies for spintronic applications.Comment: 4 pages, 4 figures, Revised version, to appear in Phys. Rev. Let

    Quantum Chaos of Bogoliubov Waves for a Bose-Einstein Condensate in Stadium Billiards

    Full text link
    We investigate the possibility of quantum (or wave) chaos for the Bogoliubov excitations of a Bose-Einstein condensate in billiards. Because of the mean field interaction in the condensate, the Bogoliubov excitations are very different from the single particle excitations in a non-interacting system. Nevertheless, we predict that the statistical distribution of level spacings is unchanged by mapping the non-Hermitian Bogoliubov operator to a real symmetric matrix. We numerically test our prediction by using a phase shift method for calculating the excitation energies.Comment: minor change, 4 pages, 4 figures, to appear in Phys. Rev. Let
    • …
    corecore