482 research outputs found

    Complementarity and Young's interference fringes from two atoms

    Get PDF
    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. Thermal motion of the atoms is included. Agreement is obtained with experiments [Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.Comment: 12 pages, including 7 EPS figures, RevTex. Submitted to Phys. Rev.

    Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock

    Get PDF
    Over a two-year duration, we have compared the frequency of the 199Hg+ 5d106s 2S 1/2 (F=0) 5d9 6s2 2D 5/2 (F=2) electric-quadrupole transition at 282 nm with the frequency of the ground-state hyperfine splitting in neutral 133Cs. These measurements show that any fractional time variation of the ratio nu(Cs)/nu(Hg) between the two frequencies is smaller than +/- 7 10^-15 / yr (1 sigma uncertainty). According to recent atomic structure calculations, this sets an upper limit to a possible fractional time variation of g(Cs) m_e / m_p alpha^6.0 at the same level.Comment: 4 pages with 3 figures. RevTeX 4, Submitted to Phys. Rev. Let

    Doppler cooling of a Coulomb crystal

    Get PDF
    We study theoretically Doppler laser-cooling of a cluster of 2-level atoms confined in a linear ion trap. Using several consecutive steps of averaging we derive, from the full quantum mechanical master equation, an equation for the total mechanical energy of the one dimensional crystal, defined on a coarse-grained energy scale whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling dynamics for an arbitrary number of ions and in the quantum regime. We discuss the validity of the ergodic assumption (i.e. that the phase space distribution is only a function of energy). From our equation we derive the semiclassical limit (i.e. when the mechanical motion can be treated classically) and the Lamb-Dicke limit (i.e. when the size of the mechanical wave function is much smaller than the laser wavelength). We find a Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with previous analytical calculations which were based on different assumptions and valid only in their specific regimes. Finally, in the classical limit we derive an analytic expression for the average coupling, by light scattering, between motional states at different energies.Comment: 19 pages, 3 figure

    Terahertz frequency standard based on three-photon coherent population trapping

    Full text link
    A scheme for a THz frequency standard based on three-photon coherent population trapping in stored ions is proposed. Assuming the propagation directions of the three lasers obey the phase matching condition, we show that stability of few 1014^{-14} at one second can be reached with a precision limited by power broadening to 101110^{-11} in the less favorable case. The referenced THz signal can be propagated over long distances, the useful information being carried by the relative frequency of the three optical photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2 (24/05/2007

    Dynamics of Quantum Collapse in Energy Measurements

    Full text link
    The influence of continuous measurements of energy with a finite accuracy is studied in various quantum systems through a restriction of the Feynman path-integrals around the measurement result. The method, which is equivalent to consider an effective Schr\"odinger equation with a non-Hermitian Hamiltonian, allows one to study the dynamics of the wavefunction collapse. A numerical algorithm for solving the effective Schr\"odinger equation is developed and checked in the case of a harmonic oscillator. The situations, of physical interest, of a two-level system and of a metastable quantum-well are then discussed. In the first case the Zeno inhibition observed in quantum optics experiments is recovered and extended to nonresonant transitions, in the second one we propose to observe inhibition of spontaneous decay in mesoscopic heterostructures. In all the considered examples the effect of the continuous measurement of energy is a freezing of the evolution of the system proportional to the accuracy of the measurement itself.Comment: 20 pages with figures, compressed and uuencoded ps fil

    Quantum Zeno effect and parametric resonance in mesoscopic physics

    Full text link
    As a realization of the quantum Zeno effect, we consider electron tunneling between two quantum dots with one of the dots coupled to a quantum point contact detector. The coupling leads to decoherence and to the suppression of tunneling. When the detector is driven with an ac voltage, a parametric resonance occurs which strongly counteracts decoherence. We propose a novel experiment with which it is possible to observe both the quantum Zeno effect and the parametric resonance in electric transport.Comment: 4 pages, 2 figure

    Quantum damping of position due to energy measurements

    Get PDF
    Quantum theory for measurements of energy is introduced and its consequences for the average position of monitored dynamical systems are analyzed. It turns out that energy measurements lead to a localization of the expectation values of other observables. This is manifested, in the case of position, as a damping of the motion without classical analogue. Quantum damping of position for an atom bouncing on a reflecting surface in presence of a homogeneous gravitational field is dealt in detail and the connection with an experiment already performed in the classical regime is studied. We show that quantum damping is testable provided that the same measurement strength obtained in the experimental verification of the quantum Zeno effect in atomic spectroscopy [W. M. Itano et al., Phys. Rev. A {\bf 41}, 2295 (1990)] is made available.Comment: 19 pages + 4 figures available upon request; Plain REVTeX; To be published in Phys. Rev.

    Absolute Frequency Measurements of the Hg^+ and Ca Optical Clock Transitions with a Femtosecond Laser

    Get PDF
    The frequency comb created by a femtosecond mode-locked laser and a microstructured fiber is used to phase coherently measure the frequencies of both the Hg^+ and Ca optical standards with respect to the SI second as realized at NIST. We find the transition frequencies to be f_Hg=1 064 721 609 899 143(10) Hz and f_Ca=455 986 240 494 158(26) Hz, respectively. In addition to the unprecedented precision demonstrated here, this work is the precursor to all-optical atomic clocks based on the Hg^+ and Ca standards. Furthermore, when combined with previous measurements, we find no time variations of these atomic frequencies within the uncertainties of |(df_Ca/dt)/f_Ca| < 8 x 10^{-14} yr^{-1}, and |(df_Hg/dt)/f_Hg|< 30 x 10^{-14} yr^{-1}.Comment: 6 pages, including 4 figures. RevTex 4. Submitted to Phys. Rev. Let
    corecore