622 research outputs found
Calculation of an optimized telescope apodizer for Terrestrial Planet Finder coronagraphic telescope
One of two approaches to implementing NASA's Terrestrial Planet Finder is to
build a space telescope that utilizes the techniques of coronagraphy and
apodization to suppress diffraction and image exo-planets. We present a method
for calculation of a telescope's apodizer which suppresses the side lobes of
the image of a star so as to optimally detect an Earth-like planet. Given the
shape of a telescope's aperture and given a search region for a detector, we
solve an integral equation to determine an amplitude modulation (an apodizer)
which suppresses the star's energy in the focal plane search region. The method
is quite general and yields as special cases the product apodizer reported by
Nisenson and Papaliolios (2001) and the Prolate spheroidal apodizer of Kasdin
et al (2002), and Aime et al (2002). We show computer simulations of the
apodizers and the corresponding point spread functions for various
aperture-detector configurations.Comment: 16 Pages, 9 figures, Accepted for publication in June issue of PAS
Drell-Yan Massive Lepton-Pair's Angular Distributions at Large
By measuring Drell-Yan massive lepton-pair's angular distributions, we can
identify the polarization of the virtual photon of invariant mass which
decays immediately into the lepton-pair. In terms of a modified QCD
factorization formula for Drell-Yan process, which is valid even if ,
we calculate the massive lepton-pair's angular distributions at large . We
find that the virtual photons produced at high are more likely to be
transversely polarized. We discuss the implications of this finding to the
J/ mesons' polarization measured recently at Fermilab.Comment: Latex, 10 pages including 4 figure
Experiment K-6-03. Gravity and skeletal growth, part 1. Part 2: Morphology and histochemistry of bone cells and vasculature of the tibia; Part 3: Nuclear volume analysis of osteoblast histogenesis in periodontal ligament cells; Part 4: Intervertebral disc swelling pressure associated with microgravity
Bone area, bone electrophysiology, bone vascularity, osteoblast morphology, and osteoblast histogenesis were studied in rats associated with Cosmos 1887. The results suggest that the synchronous animals were the only group with a significantly larger bone area than the basal group, that the bone electrical potential was more negative in flight than in the synchronous rats, that the endosteal osteoblasts from flight rats had greater numbers of transitional Golgi vesicles but no difference in the large Golgi saccules or the alkaline phosphatase activity, that the perioteal vasculature in the shaft of flight rats often showed very dense intraluminal deposits with adjacent degenerating osteocytes as well as lipid accumulations within the lumen of the vessels and sometimes degeneration of the vascular wall (this change was not present in the metaphyseal region of flight animals), and that the progenitor cells decreased in flight rats while the preosteoblasts increased compared to controls. Many of the results suggest that the animals were beginning to recover from the effects of spaceflight during the two day interval between landing and euthanasia; flight effects, such as the vascular changes, did not appear to recover
Perturbative QCD at High Energy Colliders
Selected applications of perturbative Quantumchromodynamics (QCD) to
predictions of the Standard Model for processes at high energy colliders are
reviewed with emphasis on past successes and future problems. This is a
personal retrospective is not intended to be a comprehensive review of the
field.Comment: 18 pages, 12 figures, contribution to the Symposium: 50+ Years of
High Energy Physics at UB, University at Buffalo, October 20-21, 2006. Added
references in section
Looking for CP Violation in W Production and Decay
We describe CP violating observables in resonant and plus one
jet production at the Tevatron. We present simple examples of CP violating
effective operators, consistent with the symmetries of the Standard Model,
which would give rise to these observables. We find that CP violating effects
coming from new physics at the scale could in principle be observable at
the Tevatron with decays.Comment: 15 pgs with standard LATEX, 7 ps figures embedded with eps
Influence of feeding regimens on rat gut fluids and colonic metabolism of diclofenac-β-cyclodextrin
Feeding states may affect the performance of colonic prodrugs. The aim is to investigate the influence of feeding regimen in Wistar rats on: (i) distribution and pH contents along the gut and (ii) metabolism of two colonic prodrugs, diclofenac-β-cyclodextrin and a commercially available control, sulfasalazine, within the caecal and colonic contents. Male Wistar rats were subject to four different feeding regimens, the gut contents characterized (mass and pH) and the metabolism of prodrugs investigated.
The feeding regimen affects gut contents (mass and pH), more specifically in the stomach and lower intestine, and affects the rate of metabolism of diclofenac-β-cyclodextrin, but not that of sulfasalazine. The latter's degradation is much faster than that of diclofenac-β-cyclodextrin while the metabolism of both prodrugs is faster in colonic (versus caecal) contents. Fasting results in most rapid degradation of diclofenac-β-cyclodextrin, possibly due to lack of competition (absence of food) for microbial enzymatic activity
Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
One of the most robust methods, demonstrated up to date, of accelerating
electron beams by laser-plasma sources is the utilization of plasma channels
generated by the capillary discharges. These channels, i.e., plasma columns
with a minimum density along the laser pulse propagation axis, may optically
guide short laser pulses, thereby increasing the acceleration length, leading
to a more efficient electron acceleration. Although the spatial structure of
the installation is simple in principle, there may be some important effects
caused by the open ends of the capillary, by the supplying channels etc., which
require a detailed 3D modeling of the processes taking place in order to get a
detailed understanding and improve the operation. However, the discharge
plasma, being one of the most crucial components of the laser-plasma
accelerator, is not simulated with the accuracy and resolution required to
advance this promising technology. In the present work, such simulations are
performed using the code MARPLE. First, the process of the capillary filling
with a cold hydrogen before the discharge is fired, through the side supply
channels is simulated. The main goal of this simulation is to get a spatial
distribution of the filling gas in the region near the open ends of the
capillary. A realistic geometry is used for this and the next stage
simulations, including the insulators, the supplying channels as well as the
electrodes. Second, the simulation of the capillary discharge is performed with
the goal to obtain a time-dependent spatial distribution of the electron
density near the open ends of the capillary as well as inside the capillary.
Finally, to evaluate effectiveness of the beam coupling with the channeling
plasma wave guide and electron acceleration, modeling of laser-plasma
interaction was performed with the code INF&RNOComment: 11 pages, 9 figure
On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas
A method for the asymmetric focusing of electron bunches, based on the active
plasma lensing technique is proposed. This method takes advantage of the strong
inhomogeneous magnetic field generated inside the capillary discharge plasma to
focus the ultrarelativistic electrons. The plasma and magnetic field parameters
inside the capillary discharge are described theoretically and modeled with
dissipative magnetohydrodynamic computer simulations enabling analysis of the
capillaries of rectangle cross-sections. Large aspect ratio rectangular
capillaries might be used to transport electron beams with high emittance
asymmetries, as well as assist in forming spatially flat electron bunches for
final focusing before the interaction point.Comment: 16 pages, 7 figures, 1 tabl
Investigations into the mechanism of action of nitrobenzene as a mild dehydrogenating agent under acid-catalysed conditions
Protonated nitrobenzene can be used to dehydrogenate a range of hydrocarbons, which already possess at least one double bond. Kinetic and spectroscopic results, together with known electrode potentials, yield approximate limits within which protonated nitrobenzenes can be expected to effect dehydrogenation of hydroaromatic compounds. A
high yielding synthesis of benzo[ j ]fluoranthene is described
- …