93 research outputs found

    The impact of immune response on endochondral bone regeneration

    Get PDF
    Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin

    Distributing CV entanglement over 4 co-propagating orthogonal modes

    Get PDF
    We propose a scheme for distributing continuous variable entanglement originally established among a pair of mode between a set of four orthogonal co-propagating modes. This is accomplished by exploiting the possibility of coupling polarization with optical angular momentum provided by the q-plate. Here we present the principle of the proposed scheme with a short feasibility study that shows that the four-modes covariance matrix at the scheme output represent an entangled multi mode system.Comment: 8 pages, 1 figur

    Кіноніми Кіровоградщини: особливості вибору кличок та способи їх творення

    Get PDF
    Стаття присвячена вивченню особливостей української кінонімії. Основну увагу зосереджено на дослідженні процесу номінації та способів словотворення кличок собак. Окремо розглянуто офіційні назви тварин, які мають родослівну.Статья посвящена изучению особенностей украинской кинонимии. Основное внимание сосредоточено на изучении процесса номинации и способах словообразования кличек собак. Отдельно рассмотрены официальные названия собак, имеющих родословную.The article is devoted to the research of the peculiarities of Ukrainian cynonymy. Most attention is taid to the research of the process of nomination and to the ways of formation of dogs' names. Special consideration is given to the official names of the animals with genealogy

    Engineering of a complex bone tissue model with endothelialised channels and capillary-like networks

    Get PDF
    In engineering of tissue analogues, upscaling to clinically-relevant sized constructs remains a significant challenge. The successful integration of a vascular network throughout the engineered tissue is anticipated to overcome the lack of nutrient and oxygen supply to residing cells. This work aimed at developing a multiscale bone-tissue-specific vascularisation strategy. Engineering pre-vascularised bone leads to biological and fabrication dilemmas. To fabricate channels endowed with an endothelium and suitable for osteogenesis, rather stiff materials are preferable, while capillarisation requires soft matrices. To overcome this challenge, gelatine-methacryloyl hydrogels were tailored by changing the degree of functionalisation to allow for cell spreading within the hydrogel, while still enabling endothelialisation on the hydrogel surface. An additional challenge was the combination of the multiple required cell-types within one biomaterial, sharing the same culture medium. Consequently, a new medium composition was investigated that simultaneously allowed for endothelialisation, capillarisation and osteogenesis. Integrated multipotent mesenchymal stromal cells, which give rise to pericyte-like and osteogenic cells, and endothelial-colony-forming cells (ECFCs) which form capillaries and endothelium, were used. Based on the aforementioned optimisation, a construct of 8 × 8 × 3 mm, with a central channel of 600 µm in diameter, was engineered. In this construct, ECFCs covered the channel with endothelium and osteogenic cells resided in the hydrogel, adjacent to self-assembled capillary-like networks. This study showed the promise of engineering complex tissue constructs by means of human primary cells, paving the way for scaling-up and finally overcoming the challenge of engineering vascularised tissues

    Gelatin-Methacryloyl Hydrogels:Towards Biofabrication-Based Tissue Repair

    No full text
    Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications

    Missed low-grade infection in suspected aseptic loosening has no consequences for the survival of total hip arthroplasty

    Get PDF
    Contains fulltext : 152486.pdf (publisher's version ) (Open Access)Background and purpose - Aseptic loosening and infection are 2 of the most common causes of revision of hip implants. Antibiotic prophylaxis reduces not only the rate of revision due to infection but also the rate of revision due to aseptic loosening. This suggests under-diagnosis of infections in patients with presumed aseptic loosening and indicates that current diagnostic tools are suboptimal. In a previous multicenter study on 176 patients undergoing revision of a total hip arthroplasty due to presumed aseptic loosening, optimized diagnostics revealed that 4-13% of the patients had a low-grade infection. These infections were not treated as such, and in the current follow-up study the effect on mid- to long-term implant survival was investigated. Patients and methods - Patients were sent a 2-part questionnaire. Part A requested information about possible re-revisions of their total hip arthroplasty. Part B consisted of 3 patient-related outcome measure questionnaires (EQ5D, Oxford hip score, and visual analog scale for pain). Additional information was retrieved from the medical records. The group of patients found to have a low-grade infection was compared to those with aseptic loosening. Results - 173 of 176 patients from the original study were included. In the follow-up time between the revision surgery and the current study (mean 7.5 years), 31 patients had died. No statistically significant difference in the number of re-revisions was found between the infection group (2 out of 21) and the aseptic loosening group (13 out of 152); nor was there any significant difference in the time to re-revision. Quality of life, function, and pain were similar between the groups, but only 99 (57%) of the patients returned part B. Interpretation - Under-diagnosis of low-grade infection in conjunction with presumed aseptic revision of total hip arthroplasty may not affect implant survival

    Acceleration of Bone Regeneration Induced by a Soft-Callus Mimetic Material

    Get PDF
    Clinical implementation of endochondral bone regeneration (EBR) would benefit from the engineering of devitalized cartilaginous constructs of allogeneic origins. Nevertheless, development of effective devitalization strategies that preserves extracellular matrix (ECM) is still challenging. The aim of this study is to investigate EBR induced by devitalized, soft callus-mimetic spheroids. To challenge the translatability of this approach, the constructs are generated using an allogeneic cell source. Neo-bone formation is evaluated in an immunocompetent rat model, subcutaneously and in a critical size femur defect. Living spheroids are used as controls. Also, the effect of spheroid maturation towards hypertrophy is evaluated. The devitalization procedure successfully induces cell death without affecting ECM composition or bioactivity. In vivo, a larger amount of neo-bone formation is observed for the devitalized chondrogenic group both ectopically and orthotopically. In the femur defect, accelerated bone regeneration is observed in the devitalized chondrogenic group, where defect bridging is observed 4 weeks post-implantation. The authors' results show, for the first time, a dramatic increase in the rate of bone formation induced by devitalized soft callus-mimetics. These findings pave the way for the development of a new generation of allogeneic, "off-the-shelf" products for EBR, which are suitable for the treatment of every patient

    The impact of immune response on endochondral bone regeneration

    No full text
    Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a cartilaginous tissue engineered construct of allogeneic origin
    corecore