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REVIEW ARTICLE OPEN

The impact of immune response on endochondral bone
regeneration
A. Longoni1,2, L. Knežević1,3, K. Schepers 4, H. Weinans5,6,7, A. J. W. P. Rosenberg1 and D. Gawlitta1,2

Tissue engineered cartilage substitutes, which induce the process of endochondral ossification, represent a regenerative strategy
for bone defect healing. Such constructs typically consist of multipotent mesenchymal stromal cells (MSCs) forming a cartilage
template in vitro, which can be implanted to stimulate bone formation in vivo. The use of MSCs of allogeneic origin could
potentially improve the clinical utility of the tissue engineered cartilage constructs in three ways. First, ready-to-use construct
availability can speed up the treatment process. Second, MSCs derived and expanded from a single donor could be applied to treat
several patients and thus the costs of the medical interventions would decrease. Finally, it would allow more control over the
quality of the MSC chondrogenic differentiation. However, even though the envisaged clinical use of allogeneic cell sources for
bone regeneration is advantageous, their immunogenicity poses a significant obstacle to their clinical application. The aim of this
review is to increase the awareness of the role played by immune cells during endochondral ossification, and in particular during
regenerative strategies when the immune response is altered by the presence of implanted biomaterials and/or cells. More
specifically, we focus on how this balance between immune response and bone regeneration is affected by the implantation of a
cartilaginous tissue engineered construct of allogeneic origin.

npj Regenerative Medicine            (2018) 3:22 ; doi:10.1038/s41536-018-0060-5

INTRODUCTION
Bone healing is a remarkable process that can deliver fully
functional and integrated new tissue, without scar formation.1 Due
to this regenerative capacity, the majority of bone fractures, which
are the most common large organ injuries, reach resolution
through complete healing. Nevertheless, 10% of all fractures do
not completely heal, resulting in failed bridging of the bone
defect, called a non-union.2 In addition, certain bone degenerative
disorders, as well as osteosarcomas, can result in loss of bone
tissue that cannot be repaired through the natural healing
process.1 Bone grafting has been the treatment of choice in such
cases, primarily autologous, and occasionally allogeneic. However,
both options have well-known disadvantages: the first one
includes morbidity of the surgical site from where the graft is
removed, while the latter bares the risks of immune rejection and
disease transmission.3 Besides, the scarcity of graft material
represents another driving force behind the search for
alternatives.3

Tissue engineered bone constructs represent an attractive
alternative. Traditionally, they rely on osteogenic cells seeded in
3D scaffolds to enhance the natural healing capacity of the
recipient.4 The most commonly employed regenerative strategy is
to mimic the intramembranous repair process, where a bone
matrix is directly synthesized in vitro and subsequently implanted
in vivo.4,5 So far, these cell-seeded constructs have shown greater
potential in vitro compared to in vivo, probably due to insufficient
vascularization of the constructs upon implantation.4,6 A

promising alternative strategy exploits the chondrogenic potential
of cells to mimic the endochondral ossification process. Similarly
to the long bone natural development, during the tissue
regeneration therapies, an implanted cartilaginous template will
acquire a hypertrophic chondrogenic phenotype; will be invaded
by blood vessels, host osteoblasts and osteoclasts, and will
eventually be converted into bone tissue.4,5,7,8 The endochondral
strategy encompasses several advantages over other cell-based
approaches. For example, chondrocytes can survive in low-
nutrient environments,5,9 and are thus an attractive cell source
for implantation. Also, this eliminates the need for an integrated
vascular network, simplifying the culturing process.6 Further, the
proposed terminal nature of the hypertrophic chondrocyte
differentiation2,10 suggests an eventual deletion of the majority
of the implanted cells.11 These features together with the
robustness and efficiency of this approach7,11–15 make endochon-
dral bone regeneration (EBR) an appealing strategy for clinical
translation.
However, some considerations pertain to the clinical translat-

ability of the approach. Currently, bone-marrow-derived multi-
potent mesenchymal stromal cells (MSCs) are the most frequently
used cell source for EBR research.4 Although adipose-derived stem
cells may be an alternative cell source for EBR,16,17 only few
reports exist to date. Thus, in this review we focus on bone-
marrow-derived MSCs. MSCs are not only capable of differentiat-
ing toward the chondrogenic lineage,18 but they also sponta-
neously progress into a hypertrophic phenotype,19 which is a
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particularly favorable characteristic for the endochondral applica-
tion. However, the development of bone substitutes using MSCs
requires expansion and in vitro differentiation to produce an
implantable cartilaginous template. The (1) unpredictable lengthi-
ness of the pre-operative laboratory work, which includes MSC
isolation, expansion, characterization, and differentiation; together
with (2) the difficulties in synchronizing the process with the
surgical schedule; and most importantly, (3) the heterogeneity in
differentiation potential between MSCs isolated from different
donors,13,20 pose an obstacle for the use of autologous MSCs and
the second point also for allogeneic MSCs. Furthermore, the
harvest of autologous cells represents an additional discomfort for
the patient and a logistical challenge, as it involves an invasive
intervention for the patient prior to the regular operation for bone
reconstructive purposes. Finally, high costs are associated with
growing and differentiating the MSCs under Good Manufacturing
Practice conditions when performing such a procedure in a
personalized fashion.21

Allogeneic cell sources represent an attractive alternative,
offering the possibility of developing a “ready-to-use” product.22

In particular, allogeneic MSCs could be isolated, expanded, and
characterized for their hypertrophic chondrogenic potential in
advance, reducing the time required to produce the graft
substitute, avoiding complex logistics and the need of two
interventions for the patient. In addition, this approach would
benefit patients whose own MSCs have a lower chondrogenic
potential, such as the elderly.23,24 Lastly, MSCs harvested from one
donor could be used to treat multiple patients, which would
reduce the costs of treatment considerably. Obviously, the use of
non-autologous cell sources in EBR could potentially simplify the
implementation into the clinical practice. However, the main
problem posed by the use of non-autologous cells is their
immunogenicity. Transplanted cells could be recognized and
cleared by the host immune system, preventing the integration
and the remodeling of allogeneic tissue engineered con-
structs.25,26 Furthermore, it is known that an extensive crosstalk
exists between bone cells and cells of the innate and adaptive
immune systems during bone development and fracture heal-
ing.27 For instance, there is consistent evidence in literature of
new bone formation enhancement achieved by promoting the
initial acute inflammatory response with localized pro-
inflammatory stimuli.28–31 However, altering the homeostasis
between immune and bone cells by, for example, inducing a
chronic inflammatory condition due to the presence of allogeneic
cells, might negatively affect the balance between bone formation
and resorption.32 This could lead to the failure of the EBR process.
Apart from studies focusing on bone regeneration following
implantation of allogeneic osteogenically differentiated
MSCs,26,33,34 the in vivo regenerative potential of non-
autologous MSCs has been studied mainly on non-differentiated
MSCs35–38 or in immunocompromised animal models.4,7,15 Thus,
the role of the immune system in EBR, in particular when
allogeneic, chondrogenically differentiated MSCs will be used, is
largely unknown.
The scope of this review is to highlight the immunological

aspects that can affect the outcome of EBR strategies. To this end,
a general analysis of the role of the immune system in
endochondral fracture healing and in response to implanted cells
and/or biomaterials is provided. Then EBR is detailed before we
propose a speculative analysis of the feasibility of using allogeneic,
chondrogenically differentiated MSCs for EBR. Further, under-
standing the fate of the allogeneic chondrocytes after implanta-
tion will help elucidating if the exposure to allogeneic epitopes is
only a transient or long-lasting challenge for the host immune
system.

THE ROLE OF THE IMMUNE SYSTEM IN BONE HOMEOSTASIS
AND HEALING
Two distinct bone forming processes are responsible for fracture
healing, namely intramembranous and endochondral ossification.
Intramembranous ossification, which involves the direct differ-
entiation of MSCs into osteoblastic cells, is mainly found in bone
healing of fractures characterized by high mechanical stability due
to the presence of, for example, rigid fixation.2,8 On the other
hand, the healing of larger defects with mechanical instability due
to macro and micromotion between the bone edges (e.g.,
fractures treated in a cast or with traction) occurs predominantly
through endochondral ossification.8 In this section the cascade of
events occurring during endochondral ossification will be
reviewed together with the approaches used to mimic this
process for regenerative purposes. Furthermore, the cells and
factors from the innate and adaptive immune systems relevant in
EBR will be presented. This will provide the basis to understand
the cellular and molecular interactions of immune cells and cells
involved in bone regeneration.

Endochondral bone formation in fracture healing
After trauma, two areas are primarily involved in bone repair: at
the periphery of the fracture site the periosteum elevation
mediates direct bone deposition, whereas in the central region
of the defect, a cartilaginous soft callus is formed in order to
stabilize it.8 The structure of the fracture callus has often been
compared to the one of the growth plate, present during long
bone development. Both structures present an organized
cartilaginous template composed of similar structural proteins
(e.g., collagen types I, II, and X) and signaling molecules (e.g.,
Indian hedgehog, bone morphogenetic proteins).8,39 Also, the
resident chondrocytes are arranged in a zonal fashion.5 In a first
zone, chondrocytes are embedded in an avascular matrix, rich in
collagen type II and proteoglycans. In the adjacent areas,
chondrocytes proliferate and organize themselves into columnar
structures, where they acquire a hypertrophic phenotype.4,5 Few
changes mark the chondrocyte transition towards hypertrophy.
Firstly, they start synthesizing collagen type X, metalloproteinases
(e.g., MMP-2, MMP-9, and MMP-13) and proangiogenic factors,
including transferrin and vascular endothelial growth factor
(VEGF).4,5 Furthermore, chondrocytes undergo morphological
changes, considerably increasing their size.5,40 Finally, this stage
is characterized by a downregulation of genes involved in
chondrogenesis followed by an upregulation of those involved
in osteogenesis, including runt-related transcription factor 2,
alkaline phosphatase and osteonectin, which will eventually lead
to the mineralization of the cartilaginous matrix.5,41 The remodel-
ing of the cartilaginous matrix, promoted by the presence of the
degrading enzymes, metalloproteinases, in combination with the
secretion of proangiogenic factors, facilitate blood vessel invasion
and the infiltration of osteoprogenitor cells and osteoclasts.4,10 As
a consequence, the mineralized cartilage matrix is replaced by
woven bone to form a more stable hard callus.42 Finally, the
woven bone is remodeled by the concerted actions of osteoblasts
and osteoclasts, and the original cortical and/or trabecular bone
architecture is restored.39,42

EBR strategies
The feasibility of recapitulating the above described natural
healing process for regenerative purposes has been widely
explored in the last decades.4,7,11–15,43,44 Several studies demon-
strated that in vitro engineered cartilage templates obtained from
MSCs alone,13,19,44 or in combination with different biomater-
ials,14,15,43,45 could be successfully converted into new bone tissue
upon implantation, both ectopically12,19 and orthotopi-
cally.13,14,43,45 However, so far no consensus has been reached
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regarding the optimal length of the period for chondrogenic
differentiation prior to implantation.4,46 It could span from as little
as 1 week44 to 7 weeks.19 Also, no agreement exists regarding the
optimal differentiation status (chondrogenic or hypertrophic
chondrogenic) before implantation.4,46 These issues were explored
in a recent publication by Yang et al.,47 where the effect of
different chondrogenic priming periods preceding implantation
on endochondral bone formation was explored. In particular,
when rat MSCs were chondrogenically differentiated for 2, 3, or
4 weeks, differences in glycosaminoglycans (GAG) content and
extracellular matrix distribution were found prior to the in vivo
implantation. Nevertheless, this did not lead to differences in bone
volume after 8 weeks of subcutaneous implantation.47 This was
explained by the fact that the markers, which are typical of the
hypertrophic stage (VEGF and collagen type X), were already
present in the constructs after 2 weeks. This indicates that, as soon
as expression of factors related to the hypertrophic stage is
reached, further differentiation in vitro may not be required to
maximize the extent of new bone formation.
After implantation, one of the most interesting aspects to

consider is the contribution of the donor (implanted) cells to the
new bone formation. After 4–16 weeks, the newly formed bone
tissue presents an appearance similar to native bone, with a
cortical outline and an inner bone marrow-like structure.11,12,14

Scotti et al.12 determined the contribution of xenogeneic,
chondrogenically differentiated MSCs to endochondral bone
formation in a subcutaneous, immunodeficient mouse model by
staining the explants for specific human Alu repeats. Interestingly,
after 12 weeks, donor-derived cells were present in the more
inner, trabecular-like bone structures. On the contrary, the outer,
cortical-like bone was completely remodeled and populated by
donor-derived cells.12 Comparable results were obtained by Farrell
et al.11 and by Bahney et al.48 after the subcutaneous implantation
of rat and human chondrogenically differentiated MSCs in a co-
isogenic rat and immunodeficient mouse model, respectively. In
particular, the presence of donor-derived osteocytes was con-
firmed after 648 and 8 weeks11 of implantation, demonstrating the
active contribution of the tissue engineered cartilaginous tem-
plate to the endochondral ossification process. On a final note,
implanted MSCs could be involved in recruiting host cells at the
remodeling site, promoting neovascularization and new bone
formation.4 Long-term persistence of implanted cells in the bone
tissue has not been investigated to date. It is to be expected that
depending on the size of the implanted construct, the natural
process of bone remodeling will eventually replace the implanted
cells with host cells.

Key players of the immune system in bone healing
When bone is fractured, it usually results in damage of the
surrounding tissues and vasculature, thereby inducing a state of
inflammation and the formation of a hematoma.49 The hematoma
environment is characterized by a low pH,49 hypoxia,50 high
concentrations of both pro- and anti-inflammatory cyto-
kines,2,49,51,52 and both innate and adaptive immune cells
invading from the peripheral blood and the surrounding
tissues.49,51 The first cells to act in the fracture zone are
neutrophils53 that prevent the spread of pathogens and attract
macrophages to the injured site.51 Following neutrophil infiltra-
tion, tissue resident macrophages, together with the infiltrating
macrophages, release pro-inflammatory cytokines, and promote
mesenchymal stem cell migration to the hematoma.2,42,53 Here,
endogenous mesenchymal stem cells are directly involved in the
fracture healing process. In particular, they can differentiate
towards both, the chondrogenic lineage to participate in the
synthesis of the cartilaginous matrix of the soft callus; and the
osteogenic lineage to promote intramembranous ossification at
the fracture edges.4 In response to the inflammatory environment,

the infiltrating macrophages acquire a pro-inflammatory pheno-
type (M1), secreting pro-inflammatory cytokines, including
interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and inter-
feron-γ (IFN-γ).54 This eventually leads to amplification of the pro-
inflammatory response and to the activation of the adaptive
immune response, in particular of T lymphocytes.54 Their role in
fracture healing can be both detrimental, as well as beneficial,
depending on the T cell subsets recruited.55,56 For example,
terminally differentiated CD8+ T cells were found to secrete pro-
inflammatory signals such as TNF-α and IFN-γ in the fracture
hematoma. These signals are known to negatively affect MSC
osteogenic differentiation in vitro.55 Accordingly, depleting CD8+
T cells from an osteotomy gap improved bone regeneration.55

Furthermore, Toben et al.57 reported faster bone regeneration,
lower levels of TNF-α and higher levels of anti-inflammatory
cytokines like IL-10, in RAG-1−/− mice model, which lacks an
adaptive immune system.57 However, when depleting all activated
T cells by injecting an anti-CD25 antibody during the inflammatory
phase, no improved fracture healing was reported.58 This was
attributed to the fact that anti-CD25 antibody also depletes
regulatory T cells (Tregs), which can promote bone formation
through the downregulation of TNF-α and IFN-γ and the secretion
of IL-4, a chemoattractant for osteoblast.51,58

Even if the initial inflammatory response is a crucial step and
initiates the cascade, the resolution of the hematoma and its
conversion to granulation tissue is essential for the healing of the
fracture. In the subsequent proliferative phase, macrophages,
which are known to be an extremely plastic population, acquire
mostly an anti-inflammatory and angiogenic phenotype (M2) in
response to a change in the surrounding cellular and cytokine
milieu.54 In particular, M2 macrophages start to secrete VEGF to
enhance vascularization in the fracture area59 and immunomo-
dulatory cytokines including IL-10 and transforming growth factor
β (TGF-β).54 TGF-β plays a vital role in chondrogenic differentiation
of mesenchymal stem cells for the formation of the soft,
cartilaginous callus.54 Thereafter, the acquisition of the hyper-
trophic phenotype is essential for the subsequent mineralization
of the callus and its conversion into bone by the joint actions of
osteoblasts and osteoclasts.2 The newly deposited bone, known as
hard callus, is typically irregular. Its remodeling into cortical and/or
trabecular bone represents the last stage of the fracture repair.42

Crosstalk between immune cells and bone remodeling
Besides their role in removing dead tissue remnants and in
reducing the spread of infection, cells from the adaptive and
innate immune systems also affect bone homeostasis.27,60 The
most obvious immune cells that affect bone homeostasis are the
osteoclasts that, like dendritic cells (DC) and macrophages, derive
from a myeloid precursor.27 Osteoclasts are responsible for the
catabolic phase of bone remodeling, which means that they play
an active role in bone resorption. Their activity is tightly coupled
with the anabolic phase of bone remodeling, where osteoblasts
are responsible for new bone deposition.27 Key molecules
responsible for the connection between osteoclasts and osteo-
blasts are the receptor activator of nuclear factor κB (RANK),
receptor activator of nuclear factor κB ligand (RANKL), and
osteoprotegerin (OPG). Their interaction is known as the RANK/
RANKL/OPG axis.27,61,62 Specifically, RANKL is a transmembrane
protein synthesized by the osteoblasts that is involved in
osteoclast maturation and activation. Its action is mediated by
the binding to its receptor RANK, present on the pre-osteoclast
surface.63 The balance between bone resorption and deposition is
tightly regulated by the presence of OPG, a decoy receptor also
secreted by the osteoblasts.62 The production of RANKL by several
immune cells including monocytes, neutrophils, DC, and B and T
lymphocytes, highlights their role in the regulation of osteoclast
and osteoblast activity.62 Besides RANKL production by multiple
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immune cells, several more examples can show the tight
connection between immune cells and bone homeostasis. For
instance, activated T cells can both positively and negatively
influence bone homeostasis by secreting osteoclastogenic cyto-
kines, depending on the T cell subpopulation involved.61 T helper
17 (Th17) cells, for example, represent the T lymphocyte
subpopulation renowned for the involvement in bone resorption.
They secrete IL-17 that, besides being a potent stimulator of
RANKL expression, induces the synthesis of matrix-degrading
enzymes.62,64 On the other hand, T helper 1 (Th1) and 2 (Th2)
primarily inhibit osteoclasts maturation through the secretion of
IFN-γ and IL-4, respectively.65 Similarly, regulatory T cells (Tregs)
are known to express anti-inflammatory cytokines like IL-4, IL-10,
and TGF-β, which suppress ostoclastogenesis.62 Besides T
lymphocytes, other immune cells are known to be able to
influence bone homeostasis. B cells, and in particular bone
marrow plasma cells, are known to be involved in modulating the
balance between bone resorption and deposition, as they
represent a major source of OPG.61,66 In addition to adaptive
immune cells, innate immune cells, including macrophages and
neutrophils, can influence bone formation secreting pro or anti-
inflammatory cytokines.67 In particular, pro-inflammatory cyto-
kines like TNF-α, IL-6, and IL-1β promote RANKL secretion, increase
osteoclast differentiation and resorption capacity, while inhibiting
osteoblast differentiation and activity.27 On the other hand, anti-
inflammatory cytokines including IL-4 and IL-10 increase bone
formation by inducing osteoblast proliferation and inhibiting
osteoclastogenesis.62 Thus, it is clear that immune cells play a role
in bone remodeling and the outcome depend on the balance
between factors that promote or inhibit osteoclasts maturation
and catabolic activity and factors that attract and promote
osteoblasts differentiation and bone formation.

TISSUE ENGINEERING: BALANCING THE IMMUNE RESPONSE
AND BONE FORMATION
Tissue engineered bone substitutes can have various composi-
tions. In general, they can contain biomaterials and/or cells and
proteins. The cell source can be either autologous or non-
autologous, which includes xenogeneic or allogeneic sources.
Frequently, cells used for bone regeneration in preclinical studies
are chondrogenically or osteogenically differentiated or undiffer-
entiated MSCs, whether or not incorporated in a scaffold material
as a carrier. Such scaffolds are most commonly made of nature-
derived materials, such as collagen and fibrin or (semi-)synthetic
(bio)polymers, such as poly(e-caprolactone).68 Following implanta-
tion, the presence of a biomaterial and/or non-autologous cells
often can intensify the inflammatory response and eventually
affect the outcome of the fracture healing process.69 Here, the
effects of implantation of biomaterials and allogeneic cells on the
immune response and bone formation will be discussed (Fig. 1).

Immune response to biomaterials
Due to the surgical procedure required for the implantation of the
biomaterial, the integrity of the tissue inevitably becomes
compromised. In particular, the cell death by necrosis can lead
to the release of danger signals known as alarmins (e.g., heat
shock proteins, high-mobility-group box proteins and ATP), which
can recruit to the implantation site DCs and macrophages.70 As a
consequence, even if the biomaterial is defined as biocompatible,
the implantation itself can trigger an immune response that
affects the fracture healing process.70 After the implantation, the
first step in the cascade of inflammatory events is the activation of
the coagulation cascade and the complement system.70 The
activation of factor XII, the initiator of the intrinsic coagulation
cascade, is promoted by its direct contact with the surface of
biomaterials71 and by platelet adhesion to the surface and

activation.72 Downstream, thrombin activation catalyses fibrino-
gen cleavage, to form the primary fibrous mesh around the
biomaterial.70 The complement system is also activated, mostly via
the classical and the alternative pathway.73 Together with
fibrinogen,74 fibrin and the anaphylatoxins of the complement
cascade, other proteins adsorb to the biomaterial surface. Among
those, fibronectin and vitronectin have a pivotal role in the
regulation of the inflammatory response to the implanted
biomaterial.70 The proteins adsorbed to the surface form a
provisional matrix, which influences the subsequent immune cell
adhesion and activation.75,76 Furthermore, the newly formed
matrix is a rich source of chemokines, cytokines, and growth
factors involved in attracting immune cells.77 Thus, immune cells
migration to the implantation site, adhesion and activation on
biomaterials mainly occurs through the interaction of adhesion
receptors, like integrins with the adsorbed proteins.
Similarly to the fracture healing process, the first cells recruited

to the implant site are neutrophils.77,78 The interaction with the
adsorbed matrix proteins promotes their phagocytic activity, the
release of granules loaded with proteases and the production of
reactive oxygen intermediates (ROIs).79 Together, these destruc-
tive agents may damage the implant80 and promote the
recruitment of monocytes and macrophages.77 The infiltration of
macrophages and lymphocyte to the implantation site mark the
transition from acute to chronic inflammation.81 M1 is the
macrophage phenotype that is predominantly present during
the first stages of inflammation, as these macrophages are directly
involved in pathogen killing, secretion of pro-inflammatory
cytokines, and Th1 cell recruitment. The uptake of wound debris
and apoptotic neutrophils by macrophages can stimulate the
production of immunomodulatory molecules, including TGF-β, IL-
10, and prostaglandin E2. Together with IL-4 and IL-13 that are
secreted by granulocytes, mast cells, and Th2 cells, these
immunomodulatory molecules trigger M2 polarization of the
macrophages. Depending on the specific M2 macrophage
subtype that is being generated, they could be involved in
immunomodulation or in tissue repair.82 In general, M2 macro-
phages support wound healing by secreting growth factors like
TGF-β, basic fibroblast growth factor (bFGF), platelet-derived
growth factor (PDGF), and VEGF, which are involved fibroblast
recruitment, proliferation, extracellular matrix (ECM) synthesis, and
blood vessel invasion.70,77 However, if macrophages fail to
phagocytose the biomaterial due to the high material-to-cell size
ratio, they fuse together to form foreign body giant cells (FBGCs).
If also FBGCs fail in phagocytosing the foreign material, they
become frustrated multinucleated macrophages. This means that
they increase their degradative capacity, organizing podosomal
structures to seal the interface with the biomaterial surface and
start to secrete ROIs and degradative enzymes.70,83 Interestingly,
FBGCs are also thought to be responsible for the secretion of anti-
inflammatory cytokines and pro-fibrotic growth factors (e.g., TGF-β
and PDGF).70 However, continuous action of FBGCs is associated
with prolonged fibroblast activation and impaired matrix deposi-
tion. In particular, within two to four weeks, the foreign material is
encapsulated within an almost avascular, fibrotic tissue capsule,
which might lead to the loss of implant function.84

The crosstalk between the innate immune response and T
lymphocytes is mainly mediated by antigen presenting cells
(APCs), in particular by DCs.85 According to the type of pathogen
recognition receptors (PRRs) involved in the interaction with the
biomaterial, different DC maturation stages are stimulated.
Immature and semi-matured DCs, for example, stimulate tolerance
and limit the inflammatory response whereas fully mature DCs
promote the development of an immune response.70 The
presence of T lymphocytes during the inflammatory phase of
the foreign body response directed against an implanted
biomaterial has been confirmed in several in vivo studies. The
specific T cell subpopulations present in this phase can steer
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macrophage polarization and fusion.82 On the contrary, little is
known about lymphocytes B role during immune response against
synthetic materials. However, their role becomes crucial when
nature-derived biomaterials, such as decellularised tissues, are
implanted. In particular, when a biomaterial is derived from non-
human primates (e.g., pigs), two different types of antibodies can
be produced. The most abundant ones are antibodies against a
carbohydrate antigen called “α-gal epitope”, which is present on
glycolipids, glycoproteins, and proteoglycans of the ECM. The

second type of antibodies, defined as anti-non gal antibodies, is
instead produced against different immunogenic peptides of the
ECM.86

Immune response to allogeneic cells
Compared to the immune response to biomaterials, the one
directed against allogeneic cells is characterized by a more
pronounced adaptive component.69 The major histocompatibility

Fig. 1 Schematic overview of the cell types involved in the endochondral ossification process induced by an allogeneic tissue engineered
construct and the immune response elicited. After implantation, the phenotype of MSC-derived chondrocytes progresses until the late
hypertrophic stage, a stage that is characterized by increased secretion of proangiogenic factors and MMPs to promote matrix remodeling
and new bone formation. However, the implantation of a biomaterial, together with the presence of allogeneic cells, at the same time induces
the recruitment of host immune cells. In particular, the immune response against the carrier biomaterial (left panel) is mainly characterized by
the presence of cells from the innate branch of the immune system while the presence of allogeneic cells triggers mostly an adaptive
response (right panel). Nonetheless, the recruited cells can influence each other through the engagement of common players (e.g., dendritic
cells and the complement system) and through the secretion of soluble factors such as cytokines that can promote the induction of a pro-
inflammatory or anti-inflammatory environment. The final outcome of the bone regeneration process is determined by the balance between
the promotion of endochondral ossification and the exacerbation of the immune response by the allogeneic construct
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complex (MHC) molecules, cell-surface glycoproteins known in
humans as the human leukocyte antigen (HLA) molecules,
represent the principal target of the allogeneic immune response
against grafted cells.87 Two different classes of MHC, MHC class I
and class II, are responsible for the antigen presentation to the T
lymphocytes. To present the allogeneic cell antigens to the
immune cells, both MHC molecules bind small peptide fragments
and display them on the cell surface. Together, the complex of a
loaded peptide and a MHC molecule can be recognized by the T
cell receptor (TCR). The capability of the TCR to recognize a unique
combination of features of both, the loaded peptide and the MHC
presenting molecules is known as MHC restriction.88 MHC class I
and II are characterized by a different structure and distribution
among the cells. This affects the type of effector T cells they can
interact with. In general, MHC class I, which is present in all
nucleated cells, is loaded with intracellular peptides and it is
recognised by CD8+ cells. MHC class II is instead loaded with
extracellular peptides. It is present on APCs, including macro-
phages, DC and B lymphocytes and it is recognised by CD4+ T
lymphocytes.89 However, APCs can also present on their MHC
class I extracellular antigens acquired via phagocytosis and
endocytosis, in order to activate CD8+ lymphocytes, by a
mechanism called cross-presentation or cross-priming.90 Consid-
ering the complexity and the high polymorphism of the MHC loci,
the region of MHC interaction with the TCR and the peptide
binding site can differ from one individual to another. As a
consequence, when donor cells are implanted, they can be
directly recognized by the host immune system because of the
differences in peptides presented on the donor MHC and the
distinct features of donor MHC molecules.88 It has been estimated
that a high proportion of 1 to 10% of all mature host T cells will
respond to stimulation by cells from another, unrelated member
of the same species.91 Besides the direct recognition of the foreign
cells by T lymphocytes, MHCs from donor cells can be taken up by
the host APCs, processed to obtain allopeptides and can be
indirectly presented on the APC surface to recipient T cells.87,92,93

Further, donor MHC class I and II molecules can be transferred to
the host’s APCs via direct cell-to-cell contact or via the release and
uptake of exosomes.94 As a consequence, it is possible to find host
APCs presenting both, allogeneic antigens retrieved by phagocy-
tosis on their MHC class II and also donor MHC class I surface
expression derived from the concurrent vesicle trafficking.92 These
different pathways of allo-recognition are non-mutually exclusive
and they all trigger host adaptive immune reactions.93 Together
this means that, in case of cell transplantation between non-
identical or MHC-mismatched individuals, the likelihood of MHC
associated rejection is high.87,95 However, many factors, including
the type of implanted cells, the site of the body where they are
introduced and the immunological status of the recipient, can
influence the nature and magnitude of the T cell response
induced. Furthermore, the ratio of CD4+ and CD8+ T lympho-
cytes that are activated during the response against the allogeneic
antigens can change according to the players involved in the
recognition process (e.g., direct recognition of the allogeneic
MHC-peptide complex from T cells or indirect activation via
indirect presentation by the APC of the host).96 Activated CD8+
T cells secrete pro-inflammatory cytokines, including IFN-γ, that
promote the skewing of CD4+ T cells toward the pro-
inflammatory Th1 cells. Furthermore, both CD8+ and Th1
lymphocytes are responsible for the direct lysis of donor cells.87

On the other hand, Th2 lymphocytes secrete interleukins IL-4, IL-5,
IL-9, IL 10, and IL-13, involved in the recruitment and activation of
eosinophils.87 After activation, eosinophils are known to release
granules containing enzymes responsible for tissue damage and
graft rejection.87 In addition to the above mentioned conse-
quences of Th1 and Th2 polarization, CD4+ cells can also
establish interactions with B lymphocytes, which can produce
anti-MHC class I and II antibodies.87 The antibodies produced

against the allogeneic antigens will coat the grafted cells,
promoting their killing in several ways, including their direct lysis
due to the activation of the complement cascade and the natural
killer (NK) cells. Besides producing alloantibodies, B cells are also
involved in the activation and modulation of T cells, since they are
directly involved in antigen presentation. Further, they are
involved in modulating the immune response, secreting cytokines
like IL-10 and TGB-β.97

As previously mentioned, cells from the adaptive immunity are
the principal mediator of the allogeneic response. However, recent
studies have attributed more importance to the innate branch of
the immune system. In particular, since macrophages and
neutrophils are the first cells recruited to the site of cell
implantation, they can influence lymphocyte activation and
polarization through cytokine secretion, promoting eventual
rejection or tolerance of the implanted cells.98 Furthermore, NK
cells are directly involved in allogeneic MHC recognition and in
transplanted cells depletion.98

IMMUNE REACTIONS AGAINST ALLOGENEIC,
CHONDROGENICALLY DIFFERENTIATED MSCS
When implanting cell-seeded constructs for EBR, it is essential that
the cells survive in the defect site long enough to initiate the
conversion of cartilage into bone. The hematoma microenviron-
ment, as well as the persistent actions of immune cells might act
to destroy the grafted MSC-derived chondrocytes prior to the
beginning of bone formation.
Culture-expanded MSCs have been shown to exhibit immuno-

modulatory properties.99–101 In particular, they express intermedi-
ate to low levels of MHC class I molecules, low levels of co-
stimulatory CD40, CD80, and CD86 and very low to no expression
of MHC class II, which enables them to evade the immune
surveillance by the CD4+ T cells.100,102 MSCs have also been
shown to inhibit T cell proliferation through indoleamine 2,3-
dioxygenase (IDO) and cyclooxygenase-2 (Cox-2) mediated
depletion of tryptophan and production of prostaglandin E2
(PGE2), respectively.103,104

In addition, MSCs can shift the Th cell phenotype from pro-
inflammatory Th1 and Th17 cells to the regulatory Treg
phenotype, either by directly influencing their polarization by
secreting TGF-β or by inhibiting the proliferation of the
inflammatory subsets.99,104,105 Besides influencing T cells, MSCs
can also play a role in modulating other immune cell types. For
example, MSCs can also inhibit DC maturation, resulting in
decreased expression of MHC class II and co-stimulatory molecules
on DCs surface.106,107 Furthermore, they can inhibit B lymphocytes
and NK cells activation and expansion through the secretion of
TGF-β. Finally, by producing IDO and PGE2, MSCs induce the
macrophage skewing toward the anti-inflammatory M2 pheno-
type.108 These mechanisms make undifferentiated MSCs an
attractive source in non-autologous transplantation. In particular,
recent clinical studies have confirmed the safety of implanting
allogeneic MSCs and their beneficial effect in diseases, such as
graft versus host disease and Crohn’s disease.109–111

However, regenerative constructs that aim to induce EBR are
typically seeded with chondrogenically differentiated MSCs. Only
a limited number of studies have studied the change in
immunomodulatory properties upon chondrogenic differentiation
of MSCs so far.102,112–119 In 2003, Le Blanc et al.102 analyzed the
changes in HLA I and II expression when MSCs were differentiated
toward the chondrogenic lineage.102 Similarly to undifferentiated
MSCs, chondrogenically differentiated MSCs expressed intermedi-
ate levels of HLA class I and no HLA class II molecules. After
stimulating chondrogenically differentiated MSCs with IFN-γ, a low
expression of HLA class II was detected, like in undifferentiated
MSCs. Further, they showed that chondrogenically differentiated
MSCs do not stimulate allogeneic lymphocytes proliferation in co-
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culture experiments, suggesting the preservation of their cap-
ability to not elicit an immune response.102 Interestingly,
chondrogenically differentiated MSCs also maintain their ability
to actively suppress lymphocytes allo-response, indicating that
they possess immunosuppressive properties similar to those of
undifferentiated MSCs.102 Further data supporting the immuno-
modulatory effect of chondrogenically differentiated MSCs are
reported in an in vitro study performed by Zheng et al.114 Similarly
to Le Blanc et al.102 they showed that both undifferentiated and
chondrogenically differentiated MSCs can inhibit proliferation and
activation of allogeneic T cells.114 Additionally, both chondrogeni-
cally differentiated and undifferentiated MSCs were equally
effective in inhibiting IFN-γ and TNF-α secretion when co-
cultured with allogeneic CD4+ and CD8+ T cells, while upregu-
lating the levels of IL-10.114 In line with these results, Du et al.117

showed that even in a pro-inflammatory environment, MSC-
derived chondrocytes displayed immunosuppressive effects on
allogeneic T cell proliferation and natural killer cell-mediated
cytotoxicity in vitro.117 Despite the incomplete understanding of
the mechanisms with which chondrogenically differentiated MSCs
retain their immunoregulatory properties, it has been proposed
that TGF-β1 and HLA-G could play a role herein.114,117 It was also
suggested that, similar to undifferentiated MSCs,120 the presence
of allogeneic, chondrogenically MSCs-derived chondrocytes do
not induce DC maturation in vitro.121 In particular, no upregulation
of maturation markers, such as CD80, CD86, and HLA-DR, was
observed on DCs during co-culture of chondrogenically differ-
entiated MSCs and immature or LPS-matured DCs. Further, though
the DCs infiltrated the chondrogenically differentiated MSC
pellets, the presence of chondrogenically differentiated MSCs
did not induced an increase in antigen uptake over time.121 Taking
the aforementioned into account, we could speculate that, even in
an in vivo setting, the implantation of allogeneic, chondrogeni-
cally differentiated MSCs will not trigger an allogeneic T cell
response. Furthermore, even if a T cell response would be
triggered, an active suppression is expected. The formation of a
tolerogenic environment would allow the remodeling of the
cartilaginous construct into new bone tissue, following the
endochondral pathway.
However, results that contrast the above observations have

been reported in literature. A recent study by Kiernan et al.115

demonstrated that chondrogenically differentiated MSCs were not
able to actively alter the proliferation of allogeneic CD4+ and
CD8+ T cells in vitro. Further, histological analysis revealed that
after co-culturing peripheral blood mononuclear cells with
chondrogenically differentiated MSCs in vitro, T cells (as identified
using anti-CD3 antibodies) infiltrated the chondrogenic matrix.
Although in this study these infiltrating lymphocytes did not
appear active, as they showed low expression levels of genes
coding for T activation proteins, including CD25 and CD69, and
pro-inflammatory cytokines like TNF-α115 Chen et al.113 reported
the ability of chondrogenically differentiated MSCs to stimulate
lymphocyte proliferation, cytotoxicity and DC maturation in vitro.
The authors suggested that the upregulation of the co-stimulatory
molecules CD80 and CD86 on the chondrogenically differentiated
MSCs could be involved in this response, since blocking their
expression reduced DCs maturation and restored levels of T
lymphocytes proliferation similar to the ones of the undiffer-
entiated MSCs.113 Even though this study113 was performed in a
xenogeneic setting, as rat MSCs were presented to human DC, the
loss of immunosuppressive properties in MSC-derived chondro-
cytes was confirmed in an allogeneic setting, both in vitro and
in vivo.112 In particular, undifferentiated or chondrogenically
differentiated MSCs were implanted subcutaneously alone or in
combination with an alginate gel in a fully MHC-mismatched
allogeneic rat model. Higher number of CD3+ lymphocytes and
CD68+macrophages infiltrated the alginate carrier when chon-
drogenically differentiated MSCs were encapsulated. Further,

T cells reactive to allogeneic antigens were found in the draining
lymph node of both, the rat group in which differentiated MSCs
were implanted, as well as in the one that received undiffer-
entiated MSCs. After the encapsulation of the allogeneic cells into
an alginate carrier, a protective effect was observed for the
undifferentiated MSCs group, as no antidonor T cell response was
observed in the local lymph node. However, such positive
influence was not observed in the chondrogenically differentiated
group. Finally, it must be noted that, despite its protective role
against T cells, the encapsulation in alginate enhanced the
production of donor-specific IgG2 antibodies.112 Similar results
were obtained by Butnariu-Epharat et al.122 in an orthotopic
implantation model in goats. In particular, when allogeneic,
chondrogenically differentiated MSCs where embedded in a
hyaluronic acid-based gel to resurface the articular knee cartilage,
a mild immunologic rejection characterized by blood cell
infiltrates was observed. These findings offer valuable insight in
the differences in immune reaction to differentiated and
undifferentiated MSCs, as well as the role of an encapsulating
biomaterial in vivo.
The contrasting in vitro results and the scarceness of in vivo

studies do not provide a clear portrait of the immunological
processes associated with allogeneic chondrogenic MSC implan-
tation.116,119 The contradictory results could be partially explained
by the differences in the ratios of chondrogenically differentiated
MSCs and T cells, as it has been show that in vitro, the suppressive
action of the MSC-derived chondrocytes on T cell activation is
dose dependent.114,115,117 More specifically, Ryan et al.112

observed an immune response to differentiated MSCs using a
low MSC/T ratio (1:50 and 1:100) compared to the studies carried
out by Kiernan et al.115 and Zheng et al114 (1:5 and 1:1, 1:5 and
1:10, respectively). Further, the composition of the induction
medium, as well as the culture and assay conditions might play a
role in increasing the immunogenicity of chondrogenically
differentiated MSCs.117,118,123 For example, TGF-β, a key compo-
nent of chondrogenic induction medium, is also involved in
regulation of the expression of HLA-DR124 and CD80 and CD86.113

This should be taken into account, especially when the changes in
expression of these molecules is analyzed. Finally, it must be
noted that most of the studies are focusing only on T lymphocytes
response, whereas little is known about allogeneic, chondrogeni-
cally differentiated MSCs influence on DCs, macrophages, NK cells,
and B cells. Thus, so far it is not possible to define whether MSCs-
derived chondrocytes will evoke an immune response upon
implantation. Further, the possible interference of a potential
allogeneic response with the endochondral process remains yet to
be elucidated.

IMPLICATIONS OF IMMUNE REACTIONS FOR EBR
In the previous sections, the physiological healing process and its
alteration due to the immune response induced by the implanta-
tion of a biomaterial and allogeneic, chondrogenically differen-
tiated MSCs were discussed. Only few studies have studied the
changes of immunological properties of allogeneic MSCs-derived
chondrocytes in vitro or in vivo. However, a great number of
studies have evaluated the immunogenicity of allogeneic
chondrocytes for cartilage tissue engineering. Thus, in this section
we will try to integrate this information and speculate on what
could be expected after the implantation of an engineered
cartilage template in terms of its endochondral bone regenerative
capacity.
In EBR, chondrocytes within the cartilage template acquire a

hypertrophic phenotype and start to secrete proangiogenic
factors and metalloproteinases to promote blood vessel invasion
and matrix remodeling. As a result, host cells involved in bone
remodeling are recruited to the implantation site and promote
cartilage remodeling and new bone formation.4 This process could
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potentially be hampered by an abnormal chronic inflammation
induced by both the carrier biomaterial and the MSC-derived
chondrocytes.
As described in the previous section, an increased immuno-

genicity of allogeneic, chondrogenically differentiated MSCs was
observed in vivo.112,122 Although similar results were sometimes
obtained when implanting allogeneic chondrocytes,125–127 an
overwhelming number of in vitro and in vivo studies suggest that
cartilage tissue possesses immunoprivileged properties, and no, or
only a minor immune response is elicited in an allogeneic
setting.125,128–132 This is thought to be due to the presence of a
tight extracellular matrix that shields chondrocyte-associated
antigens and protects the embedded cells from the immune
surveillance.125 Thus, the discrepancy between these results could
be at least partially explained by heterogeneity in MSCs
chondrogenic differentiation.122,125 The reduced ECM shielding
due to the retention of a small, undifferentiated MSCs subpopula-
tion might have hampered the immunoprivileged characteristics
of cartilage, enhancing host immune reaction. Even though the
main goal of the studies involving allogeneic chondrocytes was to
obtain stable articular cartilage and not EBR, these results tend to
support the idea that only a minor immune reaction against an
engineered, allogeneic cartilaginous construct is to be expected.
Therefore, even though evidence is diverging, we postulate that
EBR will not be hampered in its first steps because of a reaction
against the cartilage template and could proceed toward the
remodeling phase. After the conversion from cartilage to bone,
understanding the fate of the chondrocyte is crucial to define the
time span within which the host is exposed to the allogeneic
antigens. It has long been accepted that the endochondral
processes encompassed chondrocyte terminal differentiation133

including apoptosis.134–136 As a result, allogeneic cells in EBR
would eventually disappear from the implantation site and the
allogeneic cells and antigens would only be exposed to the
immune system for a limited amount of time. However, outcomes
of recent studies in lineage tracing support the hypothesis that
only a subset of the hypertrophic chondrocytes undergo
apoptosis, while most transdifferentiate to osteoblasts and
osteocytes.48,134,137,138 The mechanisms at the base of this
transformation to osteogenic cells are not fully understood
yet.134 Nevertheless, the implications for EBR are evident. At least
part of the regenerated bone would be donor-derived, which
means that the allogeneic cells and antigens could be exposed to
the host immune system cells for a longer period.48 Several
studies describe the immunogenicity of allogeneic, osteogenically
differentiated MSCs.26,116,119 Overall, it seems that allogeneic MSC-
derived osteoblasts induce a milder allogeneic immune reaction
compared to the chondrogenically differentiated MSCs both
in vitro102,113,139–141 and in vivo.33,34 In particular, osteogenically
differentiated MSCs seem to retain immunoevasive and immuno-
modulatory properties similar to the undifferentiated MSCs, since
they not only fail to stimulate alloreactive lymphocytes responses,
but they also actively suppress T cells proliferation in vitro.102

Further, MSC-derived osteoblasts showed an inhibitory effect on
DCs maturation even in a xenogeneic setting.113 However, the
implications of the presence of these allogeneic, osteogenic cells
in the bone regenerative process are unknown.
The intricacy of the interactions between host immune cells,

implanted cells and the carrier material, complicates a reliable
prediction of their effect on the EBR process. The low immuno-
genicity of the cartilage matrix, together with the suppressive
effect on T lymphocytes of MSC-derived chondrocytes support the
feasibility of using allogeneic, chondrogenically differentiated
MSCs for endochondral bone tissue engineering applications.
However, these immunoevasive and immunomodulatory proper-
ties might change during the cartilaginous template remodeling,
as the blood vessels invasion required for EBR could disrupt the
protective ECM shield, exposing the allogeneic MSC-derived

chondrocytes. Thus, to investigate the complex balance between
EBR and immune response the use of a relevant preclinical animal
model is required (as discussed in ref. 119).

CONCLUSIVE REMARKS AND FUTURE PERSPECTIVE
The implantation of an allogeneic MSC-containing engineered
construct for EBR purposes will alter the inflammatory phase of
the fracture healing process due to the presence of a biomaterial
and the chondrogenically differentiated, allogeneic cells. Depend-
ing on the balance between pro- and anti-inflammatory cytokines
and immune cell subsets, the survival of the construct and the
regeneration process may be hampered or improved.
To reduce the chances of developing a strong immune

response, selecting the appropriate carrier material is of pivotal
interest. Firstly, the biomaterial should support MSCs chondro-
genic differentiation and offer shielding from the immune system.
In addition, the use of immunomodulating biomaterials represents
a promising strategy to tailor the immune cell recruitment,
enhancing bone healing and promoting the integration of the
cell-seeded constructs. In particular, changing the surface
chemistry will influence protein adsorption on the biomaterial
surface, dictating the type of immune cell that will interact with it.
Alternatively, the incorporation of bioactive molecules can induce
the creation of a more tolerogenic environment, which will
prevent the implant rejection.70 In particular, the local delivery of
immunosuppressants through their incorporation into the carrier
material could represent a promising strategy142,143 as the
temporary release of the drugs could buy enough time for the
allogeneic cartilage template to remodel into new bone tissue,
avoiding the complications associated with systemic immune
suppression.
Considering the use of an allogeneic cell source, a (partially)

HLA matched donor might help in reducing the immune reaction
against the differentiated chondrocytes or osteocytes. In parti-
cular, a higher transplant success rate after 10 years from the
surgery has been reported for kidney transplantation when HLA
are fully, or at least partially matched between donor and
patient.144 It has been shown that the impact in graft loss
depends mostly on the effects of three antigens, HLA-A, HLA-B,
and HLA-DR. In particular, the impact of an HLA-DR mismatch can
be observed in the first 6 months after transplantation, whereas
the HLA-B mismatch effect emerges in the first 2 years, and HLA-A
mismatches have an adverse effect on long-term in renal graft
survival.95,145 This may suggest that, for EBR applications it might
be enough to have an HLA-DR and/or HLA-B match, since part of
the allogeneic cells will be lost during the cartilage conversion into
bone and the newly formed bone tissue will be remodeled and
slowly replaced entirely by the host tissue. This means that, by the
time HLA-A mismatch effects manifest themselves, the donor cells
will not be present in the host anymore.
Finally, a logical next step in EBR research entails the

development of a clinically relevant immunocompetent animal
model to validate the regenerative potential of differentiated
allogeneic MSCs. Kovach et al.60 reported a discrepancy between
immunogenicity of allogeneic MSCs when transplanted into
mouse models, compared to larger animal models. In particular,
the majority of the studies performed in mice demonstrated
immunogenic properties of allografted MSCs, while in larger
animals such as rabbits, dogs and sheep this was not the case. In
addition, Kovach et al. noticed that the majority of the studies
demonstrating the immunoprivileged status of MSCs were
performed in a bone orthotopic setting (e.g., bone healing).60

This suggested that some factors in the inflammatory environ-
ment after a bone injury promote allogeneic MSCs survival and
differentiation. Thus, the location of implantation should be
carefully chosen when the interaction with the immune system is
analyzed.
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In conclusion, when aiming at developing tissue engineered
constructs for bone regeneration, it is crucial to consider if and in
which ways the implanted biomaterials and/or cells could trigger
an immune response. Different immune cells involved in the
response can promote either bone formation or bone resorption,
affecting the regenerative outcome. As an instrumental example,
we evaluated the potential immunological effects when implant-
ing allogeneic, chondrogenically differentiated MSCs for bone
regeneration. Further steps need to be taken to evaluate whether
they represent a realistic option to improve the clinical translation
of EBR. Balancing the immune responses with regenerative
processes will be a next challenge in this promising field.
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