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Abstract 

In this study, we investigated the cyto-compatibility and cellular functionality of cell-

laden gelatin-methacryloyl (Gel-MA) hydrogels fabricated using a set of photo-initiators which 

absorb in 400 – 450 nm of the visible light range. Gel-MA hydrogels crosslinked using this 

combination of visible light photo-initiators, which consisted of ruthenium (Ru) and sodium 

persulfate (SPS), were characterised to have comparable physico-mechanical properties (sol 

fraction, mass swelling ratio and compressive modulus) as Gel-MA gels photo-polymerised 

using more conventionally adopted photo-initiators, such as 1-[4-(2-hydroxyethoxy)-phenyl]-

2-hydroxy-2-methyl-1-propan-1-one (Irgacure® 2959) and lithium phenyl(2,4,6-

trimethylbenzoyl) phosphinate (LAP). We demonstrated that the Ru/SPS system had a less 

adverse effect on the viability and metabolic activity of human articular chondrocytes 

encapsulated in Gel-MA hydrogels for up to 35 days. Furthermore, cell-laden constructs 

crosslinked using the Ru/SPS system had significantly higher glycosaminoglycan (GAG) 

content, and re-differentiation capacity as compared to cells embedded in gels crosslinked 

using UV + I2959 and Vis + LAP. We also demonstrated that the Vis + Ru/SPS system offered 

significantly greater light penetration depth as compared to the UV + I2959 system, allowing 

thick (10mm) Gel-MA hydrogels to be fabricated with homogenous crosslinking density 

throughout the construct. These results demonstrate the potential of these Ru/SPS visible light 

photo-initiators for use in fabricating cell-laden hydrogels, which offer considerable 

advantages over traditional UV polymerising systems in terms of clinical relevance and 

practicability for applications such as cell encapsulation, 3D constructs for tissue engineering, 

biofabrication and in situ crosslinking of injectable hydrogels. 
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1. Introduction 

In recent years, scaffold-based strategies adopting hydrogels as biomaterials for tissue 

engineering have received significant attention and offer a number of advantages due to their 

highly hydrated polymeric network and their structural similarity to native extracellular matrix 

[1]. Among these, photo-polymerisable gelatin hydrogels are especially attractive as they offer 

the ability for spatial and temporal control over the polymerisation process. Additionally, the 

reaction can be performed at room or physiological temperature, with fast curing rates and 

minimal heat generation [2,3].  

In general, the photo-polymerisation process requires grafting of functional photo-

labile moieties, such as methacryloyl (methacrylamides and methacrylates), tyramine, or 

styrene to gelatin [4–10]. Amongst these different photo-crosslinkable gelatin materials, 

gelatin-methacryloyl (Gel-MA) has emerged as a promising biomaterial, due to the tailorable 

physical properties (crosslinking density, swelling and stiffness) depending on the degree of 

methacryloyl substitution and the initial macromer concentration, thereby making it a versatile 

platform for various tissue engineering applications [4,11]. To date, the most commonly used 

photo-initiator to crosslink Gel-MA is 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-

1-propan-1-one, which is also known as Irgacure® 2959 (I2959) [12,13]. When exposed to 

ultraviolet (UV) light, Gel-MA undergoes crosslinking through chain-growth radical 

polymerisation. Here, the I2959 molecules absorb photons of light and dissociate into radicals, 

which then propagate through the methacryloyl groups, forming covalent kinetic chains to hold 

the polymer chains together (Figure 1A) [13]. 
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Figure 1: Schematic of the Gel-MA crosslinking process using A) UV light and I2959; B) 

Visible light and LAP; C) Visible light and Ru/SPS. 

 

However, one major drawback of using I2959 is that it requires ultraviolet (UV) light for photo-

excitation, which can potentially cause cellular DNA and tissue damage [14–16]. For example, 

previous studies conducted by Dahle et al. demonstrated that both UVA (320 – 400 nm) and 

UVB (290 – 320 nm) radiation can induce chromosomal, as well as genetic instability in 

mammalian cells [17,18]. Furthermore, Lavker et al. reported that repetitive exposure of human 

skin to low dose of UVA resulted in dermal alternations such as inflammation and lysozyme 

deposition [19]. UV light can also react with oxygen in the environment, forming reactive 

oxygen species (ROS), such as the superoxide radical (O2˙˙), hydroxyl radical (OH˙), singlet 

oxygen (1O2) and ozone (O3), which have also been shown to cause oxidative damage to DNA 

[19,20]. Additionally, for in vivo injectable hydrogel applications, UV light has been previously 

reported to have limited light penetration depth and can be attenuated by the native tissue 
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[21,22]. Elisseeff et al. showed that transmittance of UVA through human skin was 

significantly reduced, where visible light photo-initiating systems were more efficient for 

transdermal polymerisation [23]. Therefore, the development and cell-related characterisation 

of alternative photo-polymerisation systems that operate in the visible light (400-700 nm) 

spectrum may offer significant advantages for tissue engineering applications such as cell 

delivery or as space-fillers post augmentation, compared to more common UV photo-

polymerisation.   

 To date, a number of visible light photo-initiating systems have been investigated to 

fabricate cell-laden Gel-MA hydrogels, and include: camphorquinone [24,25], fluorescein 

[24], rose bengal [26],  riboflavin [24], lithium phenyl-2,4,6-trimethylbenzoylphosphinate 

(LAP) [27,28], and eosin Y [29]. In particular, LAP behaves very similarly to I2959, both being 

type 1 photo-initiators that undergo unimolecular bond cleavage to generate free radicals to 

facilitate polymerisation (Figure 1B) [14,27]. However, LAP has limited molar absorptivity in 

a narrow visible light range (ε ~ 30 M-1cm-1 at 405 nm), resulting in the need of using high 

concentrations to fabricate hydrogels [14,27]. On the other hand, although eosin-Y has a much 

higher molar absorptivity (ε ~100,000 M-1cm-1 at 525 nm), it often requires the presence of 

both a co-initiator (triethanoloamine) and a co-monomer (N-vinylpyrrolidinone or N-

vinylcaprolactam) to facilitate methacryloyl based photo-polymerisation [30–33]. In contrast, 

another emerging visible light initiating system, consisting of a ruthenium (Ru)-based 

transition metal complex (ε ~ 14600 M-1cm-1 at 450 nm) and sodium persulfate (SPS), has 

shown potential for tissue engineering applications [34–37]. When irradiated with visible light, 

the photo-excited Ru2+ oxidises into Ru3+ by donating electrons to SPS (Figure 1B). After 

accepting electrons, SPS dissociates into sulphate anions and sulphate radicals (Figure 1B). 

These radicals are subsequently able to crosslink Gel-MA by propagating through the 

methacryloyl groups [38], [39]. However, the cellular functionality such as cell differentiation 
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and tissue formation in cell-laden constructs photo-crosslinked using this Ru/SPS visible light 

system has not been investigated. Moreover, the feasibility of this visible light photo-initiating 

system to allow fabrication of large and thick constructs for in situ photo-curing has also not 

been demonstrated.   

Therefore, the aim of this study was to assess cyto-compatibility and cell functionality 

of cell-laden Gel-MA hydrogels fabricated using the Ru/SPS visible light photo-initiating 

system. We describe herein the systematic characterisation of physical properties of the visible 

light cross-linked Gel-MA hydrogels over a range of photo-initiator concentrations and 

irradiation conditions, compared to the two conventional and most commonly adopted systems,  

UV + I2959 and Vis + LAP. With clinical translation of this system in mind, we also evaluated 

the light penetration depth of the Ru/SPS system to assess the feasibility of developing thick, 

fully-crosslinked tissue engineered constructs while maximising cell viability. Given that one 

of the potential applications of cell-encapsulated visible light cross-linked Gel-MA hydrogels 

is in cartilage tissue engineering, we investigated the in vitro re-differentiation capacity of 

expanded human articular chondrocytes as a clinically relevant cell source for further 

characterisation of the Ru/SPS system. 

2. Materials and methods 

2.1. Materials 

Gelatin (porcine skin, type A, 300g Bloom strength), phosphate buffered saline (PBS), 

methacrylic anhydride, cellulose dialysis membrane (14 kDa molecular weight cut-off), L-

ascorbic acid-2-phosphate (AsAp), tris(2,2-bipyridyl)dichlororuthenium(II) hexahydrate (Ru), 

sodium persulfate (SPS), calcein-AM, Propidium Iodide (PI), proteinase K, dimethyl-

methylene blue (DMMB), ethylenediaminetetraacetic acid disodium salt dihydrate (Di-

sodium-EDTA), sodium chloride (NaCl), hyaluronidase, ITS+1, dexamethasone, , 
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hydrochloric acid (37%), sodium hydroxide (NaOH), chondroitin sulphate A (CS-A) and L-

proline were purchased from Sigma-Aldrich (Missouri, USA). 1-[4-(2-hydroxyethoxy)-

phenyl]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure® 2959) was a gift from BASF 

(Ludwigshafen, Germany). Collagenase type II was purchased from Worthington biochemical 

corporation (Lakewood, USA). Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) was 

purchased from Toyo Chemical Industry (Tokyo, Japan). Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose, 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid 

(HEPES), Gibco non-essential amino acids (NEAA), foetal calf serum (FCS), 0.25% 

trypsin/EDTA, and penicillin-streptomycin (PS, 10,000 U/mL), AlamarBlue® reagent, bovine 

serum albumin (BSA), goat-anti-mouse secondary antibody (Alexa Fluor 488), F-actin 

rhodamine phalloidin (Alexa Fluor® 594 Phalloidin), 4,6-diamidino-2-phenylindole (D1306, 

DAPI), and the CyQUANT® cell proliferation assay kit were purchased from ThermoFisher 

Scientific (Auckland, New Zealand). Medical grade silicone sheets were obtained from 

BioPlexus (Ventura, USA). Cell strainers (100 µm) were purchased from BD Biosciences 

(Auckland, New Zealand). Di-sodium hydrogen phosphate (Na2HPO4) and acetic acid (glacial, 

100%) was ordered from Merck Millipore (Darmstadt, Germany). Optimal cutting temperature 

compound (OCT) was obtained from VWR International (Auckland, New Zealand). 

Transforming growth factor β 1 (TGFβ-1) was purchased from R&D systems, Minneapolis, 

USA. Primary antibodies collagen II (II-II6B3-C) were purchased from DSHB (Iowa City, 

USA). Primary antibodies for collagen I (Ab34710) and aggrecan (Ab3773) were obtained 

from Abcam (Melbourne, Australia).  

2.2. Synthesis of gelatin-methacryloyl (Gel-MA) 

Gelatin was dissolved in PBS at a 10wt% concentration, with 0.6 g of methacrylic 

anhydride per gram of gelatin added to the solution, and left to react for 1 h at 50˚C under 

constant stirring 4. This was followed by dialysis against deionised water to remove unreacted 
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methacrylic anhydride. The purified Gel-MA solution was filtered through a 0.22 µm sterile 

filter, then lyophilised under sterile conditions. The degree of methacryloyl substitution was 

quantified to be 60% (data not shown) using 1H-proton nuclear magnetic resonance 

spectroscopy (Bruker Avance 400 MHz).      

2.3. Fabrication of Gel-MA hydrogels  

Dried sterile Gel-MA (10wt%) was dissolved in PBS at 37˚C and left to cool overnight 

at RT. Prior to crosslinking, the Gel-MA solution was heated to 37˚C, then Ru and SPS were 

added, scooped into the silicon moulds (5 mm diameter x 1 mm thickness) on a glass slide and 

sandwiched with a cover slip. The samples were then irradiated (20 cm distance from light 

source for all experiments) under light (OmniCure® S1500, Excelitas Technologies). The light 

was irradiated through a light filter (Rosco IR/UV filter) where only light of the wavelength 

400 – 450 nm and final intensity of 30 mW/cm2 was allowed to pass through. A variety of 

initiator concentrations (0.1/1, 0.2/2 and 0.3/3 of Ru/SPS (mM/mM)) and exposure times (0.5, 

1, 3, 5, 10 and 15 minutes) were studied to optimise the irradiation conditions. Gel-MA 

hydrogels fabricated using Vis (intensity = 30 mW/cm2, 400 - 450 nm) + 0.05wt% LAP, UV 

(intensity = 30 mW/cm2, 300 - 400 nm) + 0.05wt% I2959, and a variety of exposure times (0.5, 

1, 3, 5, 10 and 15 minutes) were used as controls.  

2.3.1. Swelling and mass loss analysis 

All samples were weighed for the initial wet mass (minitial, t0) after crosslinking, and 

three samples were lyophilised immediately to obtain their dry weights (mdry, t0). The actual 

macromer fraction was calculated based on the equation below: 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑐𝑟𝑜𝑚𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑚𝑑𝑟𝑦,   𝑡=0 

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙,   𝑡=0
         (1) 
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These samples were then submerged in a bath of PBS and incubated at 37°C. Samples were 

removed from the incubator after 1 day, blotted dry and weighed (mswollen). The swollen 

samples were then freeze-dried and weighed again (mdry). The sol fraction and mass swelling 

ratio (q) were calculated as follows:  

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑑𝑟𝑦 = 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙  𝑥 𝑎𝑐𝑡𝑢𝑎𝑙 𝑚𝑎𝑐𝑟𝑜𝑚𝑒𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛     (2) 

𝑆𝑜𝑙 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑑𝑟𝑦− 𝑚𝑑𝑟𝑦

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙,𝑑𝑟𝑦
 𝑥 100%       (3) 

𝑞 =  
𝑚𝑠𝑤𝑜𝑙𝑙𝑒𝑛

𝑚𝑑𝑟𝑦
           (4) 

2.3.2. Compression testing 

 The stiffness of the fabricated hydrogels was measured at room temperature using a 

dynamic mechanical analyser (TA instruments, DMA 2980). Unconfined compression testing 

was performed at 30% strain/min (5 mm diameter x 2 mm thickness) and the corresponding 

force was measured at a sampling frequency of 1.67 Hz. Sample diameter was measured using 

vernier callipers, and the compressive modulus was calculated from the slope of the linear 

region (10-15% strain range) of the stress-strain curves as previously reported 7.  

2.4. Cartilage excision, chondrocyte isolation and expansion 

Healthy human articular cartilage was harvested following ethics approval (New 

Zealand Health and Disability Ethics Committee - URB/07/04/014) from a consenting 28 year 

old female patient undergoing ligament reconstruction of the knee. The cartilage was diced into 

1 to 2 mm3 cubes and digested overnight at 37˚C with 0.15% w/v collagenase type II in basic 

chondrocyte medium (DMEM high glucose medium supplemented with 10% FCS, 10 mM 

HEPES, 0.2 mM L-ascorbic acid-2-phosphate, 0.4 mM L-proline and 1% 

Penicillin/Streptomycin). The resulting suspension was filtered through a 100-µm cell strainer 

to exclude the undigested tissue and centrifuged at 700g for 4 min. Isolated human articular 
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chondrocytes (HACs) were cultured in basic chondrocyte medium and expanded at 37°C in a 

humidified 5% CO2/95% air incubator. Media was refreshed twice per week.  

2.5. HAC encapsulation in Gel-MA hydrogels 

 Expanded HACs at P2 were trypsinised and suspended in basic chondrocyte medium. 

The cell suspension was added to the macromer solution containing sterile filtered initiators to 

give a final concentration of 5 x 106 HACs/ml. The cell-laden gels were then fabricated as 

outlined previously in section 2.3. Samples were then irradiated for 15 minutes at an intensity 

of 30 mW/cm2 for both UV and visible light, where initiator concentrations were kept at 

0.05wt% I2959, 0.05wt% LAP or 0.2/2 (mM/mM) Ru/SPS respective to the light source. 

Constructs were cultured in chondrogenic differentiation media (Dulbecco's DMEM high 

glucose supplemented with 0.4 mM L-proline, 10 mM HEPES, 0.1 mM NEAA, 100 U/mL 

penicillin, 0.1 mg/mL streptomycin, 0.2 mM AsAp, 1 x ITS+1 premix, 1.25 mg/mL BSA, 10 

nM dexamethasone and 10 ng/mL TGFβ-1). Live/dead, AlamarBlue®, glycosaminoglycan 

(GAG) and DNA assays were performed on the samples after 1, 21, 35 days in culture as 

described below.   

2.6. Live/dead assay   

Harvested samples were washed with PBS, then stained with 1 µg/ml of Calcein-AM 

and 1 µg/ml of PI for 10 minutes. Live cells stained green whereas dead cell nuclei stained red. 

After staining, the gels were washed with PBS for three times before imaging them, using a 

fluorescence microscope (Zeiss Axio Imager Z1). The number of live and dead cells were 

quantified using the ImageJ software (Bio-Formats plugin) and the cell viability was calculated 

using the equation below: 

𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠+𝑑𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠
 𝑥 100%     (5) 
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2.7. AlamarBlue® assay 

 An AlamarBlue assay was performed to determine the metabolic activity of cells 

according to the manufacturer’s protocol. Samples were incubated in basic chondrocyte 

medium containing 10% (v/v) AlamarBlue® reagent for 24 hours. The AlamarBlue® reagent is 

reduced from blue to red/pink colour by metabolically active cells. The reduction in 

AlamarBlue® reagent was calculated after measuring the absorbance at 570 nm, using 600 nm 

as a reference wavelength (Fluostar Galaxy BMG Labtechnology). 

2.8. Glycosaminoglycan (GAG) and DNA assay 

 Glycosaminoglycan (GAG) and DNA content were measured as described previously 

[3,40]. Briefly, cell-laden Gel-MA samples were digested overnight in 200 µL of 1 mg/ml 

proteinase-K solution at 56 ˚C. In order to quantify the amount of GAG retained in the gel, the 

digested samples were reacted with DMMB dye. The absorbance was then measured on a plate 

reader at 520 nm (Fluostar Galaxy BMG Labtechnology). GAG content was calculated from a 

standard curve constructed using known concentrations of chondroitin sulphate-A. The DNA 

content in the gels was measured using a CyQUANT kit. Following digestion, cells were lysed 

and RNA degraded using the provided lysis buffer with RNase A (1.35 KU/ml) added for 1 

hour at RT. GR-dye solution was then added to the samples, incubated at RT for 15 minutes, 

then the fluorescence was measured (Fluostar Galaxy BMG Labtechnology). A standard curve 

was constructed using the DNA provided in the kit. 

2.9. Immunofluorescence histological examination 

 The cell-laden constructs were fixed in 10% formalin for 1 hour at RT and washed in 

PBS supplemented with 0.1 M glycine. For histological evaluation, the samples were 

embedded in OCT then cryo-sectioned (30 µm thick sections) 8, 32. Sections were incubated in 
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0.1 wt.-% hyaluronidase for 30 min at RT, washed with PBS and blocked with 2 wt.%  bovine 

serum albumin (BSA) in PBS for 1 hour at RT. Primary antibodies for collagen type I (1:200, 

rabbit), collagen type II (1:200, mouse)  or aggrecan (1:300, mouse), were diluted in blocking 

buffer and applied overnight at 4 ºC. Samples were washed three times in blocking buffer for 

10 min each followed by incubation with a goat-anti-mouse (Alexa Fluor® 488) and donkey-

anti-rabbit (Alexa Fluor® 594) secondary antibodies, diluted in blocking buffer (1:400), in the 

dark for 1 hour at RT. For the last 10 min of the incubation, 4',6-Diamidino-2-Phenylindole, 

Dihydrochloride (DAPI, 1:1000 dilution) was added. Lastly, constructs were washed three 

times in PBS and visualised using the Zeiss Axioimager Z1 microscope. 

2.10. Gene expression 

 Samples cultured for 1 week were collected, digested in 10mg/ml proteinase K solution 

at 55°C for 30 min, incubated with 1ml TRIzol regent for 5 min at RT followed by RNA 

isolation in accordance with the manufacturer’s guidelines. In brief, 200 µl of chloroform was 

vigorously mixed with the samples, followed with 3 min RT incubation and 15 min 

centrifugation at 12000 g. The aqueous phase containing the RNA was transferred to tubes 

containing 500 µl isopropanol then incubated at RT for 20 min followed by centrifugation for 

10 min at 12000 g. The RNA pellet was washed twice in cold 70% ethanol and re-suspended 

in RNase free water. Ambion® DNA-free™ DNase Treatment was further used to remove any 

contaminating DNA according to manufacturer’s instructions. Total RNA yield was 

determined using a spectrophotometer (Thermo Scientific, NanoDrop 8000) and the integrity 

was validated electrophoretically (Agilent Technologies, 2200 TapeStation). 300 ng total RNA 

per sample was reverse transcribed into complementary DNA (cDNA) using TaqManTM first 

strand synthesis. Polymerase chain reaction (PCR) was then performed using an iCycler 

quantitative real-time PCR (qRT-PCR) machine (Roche, LightCycler®480 II), SYBRGreen™ 

and primers (Sigma Aldrich, KiCqStart® SYBR® Green Primers. The specific genes of 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 13 of 37 
 

interest were collagen type IA1 (GenBank accession no NM_000088), collagen type IIA1 

(GenBank accession no NM_001844) and aggrecan (GenBank accession no NM_001135). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Sigma Aldrich, GenBank accession no 

NM_002046) was selected as housekeeping gene. Each sample was run in duplicate and the 

threshold cycle and primer efficiency were analysed, where the geometric mean of the 

reference gene (GAPDH) was used to calculate the normalised mRNA expression of each 

target gene. 

2.11. Light penetration depth study 

10wt% Gel-MA macromers were prepared as outlined above in section 2.3. Prior to 

crosslinking, Ru and SPS were added to the Gel-MA solution for a final concentration of 0.2/2 

(mM/mM) Ru/SPS, pipetted into silicon moulds (5 mm diameter x 10 mm thickness) on a glass 

slide and sandwiched with a cover slip. The samples were then irradiated under light 

(OmniCure® S1500, Excelitas Technologies) for 15 minutes through a light filter (Rosco 

IR/UV filter) where only light of 400 – 450 nm wavelength and final intensity of 30 mW/cm2 

was allowed to pass through. Gel-MA hydrogels fabricated using UV light (intensity = 30 

mW/cm2, 300 – 400 nm), 0.05wt% I2959 and 15 minutes of exposure time were used as 

controls. The fabricated hydrogels were then carefully removed from the mould and sliced into 

five 2mm thick sections and marked as regions (i to v) relative to the depth from the irradiation 

source. The sections were then subjected to mass loss and swelling studies as outlined in section 

2.3.1. A similar setup was also adopted to fabricate HAC-laden constructs, with subsequent 

live/dead analysis (section 2.7) performed to evaluate cell viability within each of the five 

regions (i to v) relative to the depth from the irradiation source. 
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2.12. Transdermal polymerisation and in vivo subcutaneous implantation  

Gel-MA hydrogels fabricated using either UV + I2959 or Vis + Ru/SPS were implanted 

subcutaneously in BALB/C mice as per ethics approval C3/16. All hydrogel macromer 

components were sterile filtered prior to usage, the samples were crosslinked sterilely in a 

laminar flow hood, and incubated in sterile PBS overnight prior to implantation. Female 

BALB/C mice were anaesthetised using inhalational isofluorane. After shaving and 

disinfection, subcutaneous pockets of approximately 10mm deep were made by blunt 

dissection in a ventral direction from the incision down the side of the mouse in both directions. 

The pre-fabricated sterile Gel-MA hydrogels were then inserted into the base of the 

subcutaneous pocket, and the incision was closed using sutures and surgical glue. After 14 

days, the mice were sacrificed and the implants with surrounding tissue and underlying muscle 

were carefully dissected from the subcutaneous site and fixed in 4% (v/v) phosphate buffered 

formalin for at least 1 day at 4 °C. The harvested samples were then cryo-sectioned (30 µm 

sections) and stained with haematoxylin (H) and eosin (E). For imitation of transdermal 

polymerisation, the mice were shaven after sacrificed, the skin from the dorsal region was 

harvested, and tissue hydration was maintained in a saline bath. 10wt% Gel-MA macromer 

solution with either 0.2/2 (mM/mM) Ru/SPS or 0.05wt% I2959 were pipetted into silicon 

moulds (5 mm diameter x 10 mm thickness) on a glass slide and sandwiched with a cover slip. 

The harvested skin sample were then placed on top of the samples, and light (OmniCure® 

S1500, Excelitas Technologies) was allowed to irradiate through the skin for 15 minutes to 

crosslink the samples. A final intensity of 30 mW/cm2 was used for both the UV and visible 

light systems. Hydrogels fabricated with the same conditions without being covered by skin 

were used as controls. The fabricated hydrogels were then carefully removed from the mould 

and subjected to mass loss analysis as outlined in section 2.3.1. 
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2.13. Statistical analysis 

 All results were analysed using a two-way ANOVA with post-hoc Tukey’s multiple 

comparisons tests unless stated. Data for mass loss and swelling studies were analysed using a 

one-way ANOVA. The models were constructed using GraphPad Prism (GraphPad Software, 

version 6). Samples in each study were all prepared in triplicate, and all studies were repeated 

3 times (n=3). A p<0.05 was considered as statistically significant. 

 

3. Results  

3.1. Fabrication of Gel-MA hydrogels 

3.1.1. Optimisation of initiator concentrations  

Gel-MA hydrogels were successfully fabricated using the Ru/SPS photo-initiator 

system in the 400 - 450nm visible light range. Optimisation of the irradiation conditions 

required to fabricate Gel-MA hydrogels was investigated by examining a range of initiator 

concentrations whilst keeping the light intensity constant at 30 mW/cm2. This was based on 

previously reported data indicating this light intensity as optimal for protein-protein 

crosslinking [42,43]. The crosslinking efficiency was measured by the sol fraction (eq 3), 

which is defined as the weight fraction of polymer chains that are not covalently bound to the 

hydrogel network after photo-polymerisation [1,44,45]. It was observed that at 0.1/1 Ru/SPS 

(mM/mM), a minimum of 5 minutes exposure time was required to fabricate stable hydrogels, 

with resultant sol fraction of approximately 35 - 42% (Figure 2A). Increasing the initiator 

concentration to 0.2/2 Ru/SPS (mM/mM) significantly increased the polymerisation rate 

(p<0.05), resulting in the fabrication of hydrogels with sol fraction less than 30% within 0.5 

min. The sol fraction values decreased as the exposure time increased, and plateaued at 
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approximately 15%.  This minimal sol fraction value achieved was also comparable to gels 

crosslinked using Vis + 0.05wt% LAP and UV + 0.05wt% I2959 (Fig 2A). Furthermore, 

increasing the initiator concentration to 0.3/3 Ru/SPS (mM/mM) resulted in identical sol 

fraction profiles as 0.2/2 Ru/SPS (mM/mM). This result indicates that complete crosslinking 

of the Gel-MA macromers was achieved using 0.2/2 Ru/SPS (mM/mM). One major 

observation was that gels crosslinked using UV + 0.05wt% I2959 had a faster polymerisation 

rate, where the sol fraction value plateaued after 0.5 min of UV exposure. 
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Figure 2: Physico-chemical properties of Gel-MA hydrogels fabricated using different 

concentrations of Ru/SPS as a function of exposure time: A) Sol fraction; B) Mass swelling 

ratio, q. Gel-MA gels crosslinked using UV + 0.05wt% I2959 and Vis + 0.05wt% LAP were 

used as controls. Light intensities for both UV and visible (Vis) light were kept constant at 30 

mW/cm2 for 15 minutes. Sol fraction values of 100% indicate no hydrogel formation. 

Results obtained for the mass swelling ratio (q) complemented the sol-gel analysis, 

where a decrease in q was observed for longer exposure times (Figure 2B). Furthermore, 

samples with higher sol fraction possessed higher mass swelling ratios. Once again, increasing 
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the initiator concentration from 0.2/2 Ru/SPS (mM/mM) to 0.3/3 Ru/SPS (mM/mM) did not 

show any significant differences in the mass swelling ratio (p = 0.9680), demonstrating that 

0.2/2 Ru/SPS (mM/mM) was sufficient to completely crosslink the macromers.  

3.1.2. Mechanical testing of Gel-MA hydrogels 

It was observed that after 15 minutes of exposure at 30 mW/cm2, Gel-MA hydrogels 

fabricated using 0.1/1 Ru/SPS (mM/mM) had a compressive modulus of 12.8 ± 1.7 kPa (Figure 

3). Increasing the initiator concentration to 0.2/2 Ru/SPS (mM/mM) resulted in hydrogels of 

significantly greater compressive modulus (31.6 ± 0.8 kPa, p < 0.0001), which were 

comparable to Gel-MA hydrogels fabricated using the conventional Vis + 0.05wt% LAP (33.5 

± 1.6 kPa, p = 0.5356) and UV + 0.05wt% I2959 (33.6 ± 2.1 kPa, p = 0.4740). However, no 

significant difference was observed when the initiator concentration was further increased to 

0.3/3 Ru/SPS (mM/mM) (29.4 ± 1.9 kPa, p = 0.3626). Again, this result indicated that 0.2/2 

Ru/SPS (mM/mM) was sufficient to completely crosslink the Gel-MA macromers, which led 

to the selection of this concentration for all further studies described herein. 

 

Figure 3: Compressive modulus of Gel-MA hydrogels fabricated using different 

concentrations of Ru/SPS. Light intensity and irradiation time were kept at 30 mW/cm2 and 15 
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minutes, respectively. Gel-MA gels crosslinked using UV + 0.05wt% I2959 and Vis + 0.05wt% 

LAP were used as controls. *Indicates significant difference to other columns (p < 0.05). 

 

3.2. HAC encapsulation in Gel-MA hydrogels 

 As the overall goal was to investigate the potential for the visible light cross-linking 

system to be used for 3D cell encapsulation in tissue engineering applications, expanded 

(passage 2) HACs were encapsulated into the 3D Gel-MA hydrogels. Live-dead fluorescence 

images following short (1 day) and long-term (35 days) in vitro culture showed that the cell-

laden gels fabricated using the UV + I2959, Vis + LAP and Vis + Ru/SPS system demonstrated 

good viability and an abundance of live cells (Figure S1). In a 3D environment, chondrocytes 

typically exhibit a rounded morphology as an indication of their chondrogenic phenotype [41]. 

For all time points, it was observed that in all the UV + I2959, Vis + LAP and Vis + Ru/SPS 

system, the encapsulated cells were not only homogenously distributed, but also remained 

rounded (Figure S2). 
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Figure 4: Encapsulation of HACs in Gel-MA hydrogels using UV + I2959, Vis + LAP, and 

Vis + Ru/SPS, at 1, 21 and 35 days in culture. A) Cell viability (%); B) Metabolic activity 

reported as percentage reduction of Alamarblue reagent; C) GAG retained per dry weight 

(µg/mg); D) DNA per dry weight (µg/mg); C) GAG/DNA normalised to cell viability. 

*Significant differences between columns below each end of lines (p < 0.05).  

Total live/dead cell counts were used to evaluate viability of the encapsulated HACs. 

All systems demonstrated good cell viability over the 35-day culture period (>80%). Both the 

Vis + LAP and Vis + Ru/SPS system showed significantly higher cell viability than the UV + 

I2959 system for all three examined time points (Figure 4A). We also observed no significant 

differences between the two systems utilising visible light photo-initiation in terms of cell 

viability across all time points. After longer-term culture for 35 days, HACs encapsulated using 
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the UV + I2959 system showed a reduction in viability, whereas cell viability in both the Vis 

+ LAP and Vis + Ru/SPS samples remained greater than 85%. These results suggests that the 

visible light photo-initiator system presents a more cyto-compatible environment as compared 

to the UV crosslinking system.  

Furthermore, metabolic activity of each of the samples was examined in order to 

evaluate the biological function of encapsulated cells. It was observed that the Vis + Ru/SPS 

samples had significantly higher metabolic activity at 1 (p = 0.0016), 21 (p = 0.0001) and 35 

days (p < 0.0001) compared to UV + I2959 (Figure 4B). Similarly, the Vis + LAP samples also 

showed statistically higher metabolic activity compared to gels crosslinked using UV + I2959 

at 21 (p = 0.0146) and 35 days (p < 0.0001). These results indicate that although cells 

encapsulated in Gel-MA using the conventional UV + I2959 system exhibit favourable cell 

viability and metabolic activity throughout the culture period, the visible light system showed 

an improvement on both measures, which was likely due to the lower overall photo-toxicity, 

radical toxicity and oxidative stress exerted on the cells. 

 To determine the ability of all UV + I2959, Vis + LAP and Vis + Ru/SPS Gel-MA 

hydrogels to support biological function and extracellular matrix formation, the chondrogenic 

differentiation capacity of the HACs post encapsulation was examined in vitro. Figure 4D 

demonstrates that the encapsulated HACs were able to proliferate within the gels, regardless of 

which photo-initiation system was used, where an increase in DNA content was observed from 

1 day to 35 days. However, no significant differences were observed across all three systems 

at every examined time point. In terms of tissue formation, there was a clear increase in total 

GAG content from 1 to 35 days in the UV + I2959 (p < 0.0001), Vis + LAP (p < 0.001) and 

Vis + Ru/SPS (p < 0.0001) constructs (Figure 4C). Both visible light systems resulted in 

significantly higher GAG content of samples, compared to those crosslinked with the UV + 

I2959 system at 21 and 35 days. In addition, HACs encapsulated using Vis + Ru/SPS secreted 
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more GAGs in the hydrogels at 21 (p = 0.0033) and 35 days (p < 0.0001) after encapsulation, 

compared to the Vis + LAP crosslinked samples.  

If we consider the re-differentiation capacity of cell encapsulated Gel-MA constructs, 

GAG/DNA in the UV + I2959, Vis + LAP and Vis + Ru/SPS samples increased significantly 

from 1 to 35 days, indicating that these Gel-MA hydrogels are able to support chondrogenic 

differentiation of HACs (Figure 4E). However, most importantly, we observed that after 35 

days in culture, constructs encapsulated using Vis + Ru/SPS had significantly higher 

GAG/DNA (14.2 ± 0.7 µg/µg) than in the Vis + LAP (12.5 ± 0.9 µg/µg, p < 0.0001) and UV 

+ I2959 system (12.4 ± 0.4 µg/µg, p < 0.0001). Immunofluorescence analysis confirms that the 

encapsulated HACs secreted collagen type I, collagen type II and aggrecan in the GelMA 

hydrogels, regardless of the applied photo-encapsulation system. Further quantitative analysis 

showed that there are no significant differences in terms of collagen type I and collagen type 

II production within the gels among all three photo-polymerisation systems (Figure 5J and K). 

However, the total coverage area for aggrecan was significantly higher in the Vis + Ru/SPS as 

compared to the UV + I2959 and Vis + LAP systems (Figure 5L) where a higher expression of 

aggrecan was stained in the pericellular regions of the HACs at day 35 in the Vis + Ru/SPS 

constructs (Figure 5G-I). Chondrogenic gene expressions at early culture time point (day 7) 

were evaluated to further study the effect of oxidative stress that is exerted on the cells during 

the photo-encapsulated process. We did observe that the gene expressions for collagen type II 

and aggrecan are indeed higher in the Vis + Ru/SPS systems (Figure 5M, N & O), further 

confirming our other observations that this photo-crosslinking system is more cell friendly, and 

exerts less damage to the cells during the encapsulation process. 
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Figure 5: Immunofluorescence staining of HAC encapsulated in Gel-MA hydrogels using UV 

+ I2959, Vis + LAP, or Vis + Ru/SPS after 35 days in culture:  collagen type I (A-C); collagen 

type II  (D-F); aggrecan (G-I). Pixel coverage area per panel for collagen I (J), collagen II (K) 

and aggrecan (L). Early relative gene expression after 7 days in culture: collagen I (M), 

collagen II (N) and aggrecan (O). Scale bar = 100 µm. *Significant differences between 

columns below each end of lines (p < 0.05). 
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3.3. Light penetration depth study 

 As the photo-polymerisation processes can be applied to fabricate in vivo injectable 

hydrogels for tissue engineering applications, we further compared the effectiveness of the 

photo-polymerisation systems for fabrication of thick hydrogel constructs (10mm). One of the 

major advantage of using visible light is the better light penetration depth over UV that will be 

a beneficial for transdermal polymerisation or in situ crosslinking. As our cell encapsulation 

data suggested that the Vis + Ru/SPS is more superior over the Vis + LAP system in terms of 

HAC metabolic activity and re-differentiation capacity, we chose to only compare the Vis + 

Ru/SPS to the more conventional UV + I2959 for subsequent experiments. The UV + I2959 

system demonstrated a limited penetration depth (6 - 8mm), whereas Vis + Ru/SPS system was 

able to penetrate through and completely polymerise the entire 10mm thick construct (Figure 

6B). This observation was confirmed by mass loss data, where the Vis + Ru/SPS gels of 

different irradiation depths (i to v) had no significant difference in sol fraction values (p > 0.98). 

In contrast, for the UV + I2959 crosslinked samples, regions of the hydrogel farthest away from 

the irradiation source exhibited an increased sol fraction, with samples beyond 6mm (regions 

iv - v) completely dissolving after 1 day (sol fraction = 100%). A similar trend was observed 

for the mass swelling ratios, where no significant difference was observed for the Vis + Ru/SPS 

crosslinked samples across all regions (i to v). However, gels crosslinked using the UV + I2959 

had distinctly different swelling ratios at different depths from the irradiation source (Figure 

6D). These results further indicated that UV light has limited penetration depth as well as being 

attenuated through the z-axis during photo-crosslinking, resulting in varying crosslinking 

density with depth within the hydrogel.  
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Figure 6: Fabrication of thick hydrogel constructs using both UV + I2959 and Vis + Ru/SPS 

systems: A) Schematic of light penetration depth setup; B) Macroscopic images of Gel-MA 

constructs post photo-polymerisation, scale bar =  1 mm; C) Sol fraction values; and D) Mass 

swelling ratios of samples as per depth from irradiation spot.   

We further extended our studies to evaluate cell viability within the samples at different 

depths from the irradiation source (Figure 7). Interestingly, we observed an increase in cell 

viability at increasing depths for the UV crosslinked samples, where cells in the middle regions 

(iii, 4 – 6 mm from the irradiation source) had significantly higher viability (p < 0.0001) than 

those cells closer to the light source (i, < 2 mm from irradiation source). This data concurs with 

our previous mass loss results (Figure 6C), where UV light was likely being attenuated through 

the z-axis, with cells at different irradiation depths being subjected to different UV light 

intensity. In contrast, no significant differences in cell viability were observed for the Vis + 

Ru/SPS samples throughout the full 10mm depth of the construct (regions i-v)     
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Figure 7: Fabrication of thick cell-laden constructs using both UV + I2959 and Vis + Ru/SPS 

systems: A) Schematic of light penetration depth setup; B) Cell viability at different depths 

from the light irradiation spot. Live dead images of UV + I2959 crosslinked samples (C - G) 

for different irradiation depths i, ii, iii, iv and v respectively, scale bar = 100 µm. Images F and 

G were not available due to the gels completely dissolved after 1 day in culture. Live dead 

images of Vis + Ru/SPS crosslinked samples (H - L) for different irradiation depths i, ii, iii, iv 

and v respectively, scale bar = 100 µm. 

 

3.4. Transdermal polymerisation study and in vivo subcutaneous implantation  

One of the major advantages of having a greater light penetration depth is the potential 

use of this visible light photo-crosslinking system for transdermal polymerisation. We 

evaluated the possibility to fabricate hydrogels transdermally using murine skin (0.5 mm) as a 

model (Figure 8A), and observed that UV light had limited transmission through skin resulting 

in the formation of a weak gel that was completely dissolved after 1day (100% sol fraction, 

Figure 8B). In contrast, hydrogels were successfully crosslinked using visible light transmitted 

through the murine skin, with no statistically difference in sol fraction and swelling ratio to the 

control (Figure 8B). In vivo studies showed that after 14 days of subcutaneous implantation, 
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there was limited cell infiltration into the hydrogels fabricated using both the UV + I2959 and 

Vis + Ru/SPS system. No significant differences were observed in terms of the host response 

to the gels fabricated using both these systems, again suggesting that there were no distinct 

differences in physico-chemical and mechanical properties of hydrogels crosslinked using 

either UV + I2959 or Vis + Ru/SPS, and is in agreement with our in vitro data.     

Figure 8: Transdermal polymerisation of Gel-MA constructs using both UV + I2959 and Vis 

+ Ru/SPS systems: Schematic (A) and sol fraction (B) of Gel-MA hydrogels photo-crosslinked 

using light transmitted through murine skin; Immunohistochemical staining (H&E) of Gel-MA 

hydrogels fabricated using UV + I2959 (C & D) and Vis + Ru/SPS (E & F) post 14 days 

implanted subcutaneously. White arrows pointing to hydrogel and tissue interface. Scale bar = 

100 µm.  

 

4. Discussion 

 In this study, we demonstrated that the optimal irradiation conditions to fabricate Gel-

MA hydrogels consisted of a visible light intensity of 30 mW/cm2, photo-initiator concentration 

of 0.2/2 Ru/SPS (mM) and at least 3 minutes of exposure time. However more importantly, it 

should be recognised that the Ru/SPS concentration required to fully photo-crosslink Gel-MA 
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hydrogels in this study was 10 times lower than the initiator concentrations reported to date in 

the literature to crosslink other polymers via their phenol moieties [4,46,47]. This difference in 

initiator concentrations between Gel-MA and the other phenolated polymers such as gelatin, 

fibrinogen, resilin and tyraminated PVA, may likely be due to the reactivity of different 

functional groups, as well as different initiator components that are responsible for 

crosslinking. During the photo-polymerisation process, Ru2+ is photo-excited to Ru3+ by 

donating electrons to SPS [35,48]. For other phenolated polymeric systems, Ru3+ is responsible 

for the crosslink formation. However in our case, the sulphate radicals which are products from 

the dissociation of SPS are responsible for reacting with methacryloyl groups on Gel-MA to 

form covalent crosslinks. As the reaction between the sulphate radicals and the methacryloyl 

groups is more effective than the reaction between the Ru3+ and phenol groups, less Ru/SPS is 

therefore required to crosslink the Gel-MA hydrogels. On the other hand, however, the Ru3+ 

component may contribute to crosslinking the phenol groups present in the gelatin backbone 

concurrently.  

The sol fraction (10 – 15%), mass swelling ratio q (9 – 10) and compressive moduli 

(~20 kPa) obtained for Vis + 0.2/2 Ru/SPS (mM/mM) Gel-MA hydrogels in this study are 

comparable to properties obtained for Gel-MA gels fabricated using the UV + I2959 and Vis 

+ LAP systems [49,50]. This result indicates that the visible light system is capable of 

fabricating Gel-MA hydrogels of equivalent physico-mechanical properties to the other more 

conventional and widely adopted photo-initiated polymerisation system. Although we did 

observe that the UV + I2959 system had a faster crosslinking rate compared to both the Vis + 

LAP and Vis + Ru/SPS systems, the mass loss and swelling studies were conducted in an ideal 

environment without taking oxygen inhibition and light penetration depth into account, where 

the macromer was irradiated while sandwiched between a glass slide and cover slip, and is not 

an accurate representation of the downstream application.  Moreover, in addition to Gel-MA 
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hydrogels alone, we have successfully employed this visible light system to other polymers 

including heparin, hyaluronic acid, poly(vinyl alcohol) and gellan gum, all of which were 

functionalised with unsaturated vinyl moieties, such as methacryloyl or allyl groups [36,38,51]. 

Taking these factors into account, our work suggests that both synthetic and biological 

polymers modified with functional vinyl moieties can be crosslinked through different 

chemistries such as chain-growth methacryloyl or step-growth thiol-ene photo-click 

polymerisation, using Vis + Ru/SPS. 

As expected, encapsulated cells had high cell viability (>80%) after 1 day for both 

photoinitiator systems. This result is comparable to a previous study reported by Schuurman et 

al. where after 1 day, the viability of equine articular chondrocytes encapsulated in 10wt% Gel-

MA gels crosslinked using UV + I2959 was approximately 83% [52].  Nichol et al. also showed 

that fibroblasts encapsulated in 10wt% Gel-MA gels had viability of 82% after UV 

polymerisation [49]. In this study, applying either the Vis + LAP or Vis + Ru/SPS system 

resulted in cell-laden hydrogel constructs with an improved cell viability and significantly 

higher metabolic activity than UV gels. We believe that this result might be due to the negative 

effect of UV irradiation to the cells, which has been shown to cause genomic instability of cells 

[38,53,54]. Previous work from Greene et al. describes that hepatocytes photo-encapsulated in 

gelatin-norbornene gels using visible light + eosin-Y had significantly higher metabolic 

activity compared to their UV counterparts [14]. Caliari et al. also showed that UV irradiation 

significantly reduced the cell viability of hepatic stellate cells when compared to visible light 

for encapsulation in methacrylated hyaluronic acid hydrogels [55]. Furthermore, UV is known 

to react with oxygen in the environment, forming reactive oxygen species (ROS) such as 

superoxide radical (O2˙˙), hydroxyl radical (OH˙), singlet oxygen (1O2) and ozone (O3), which 

can oxidise the lipid bilayer of cells [54,56,57]. This lipid peroxidation may disrupt the cell 

membrane integrity and permeability, which can lead to upregulation of tissue degrading 
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enzymes, and generation of toxic products [54,57]. The chondrogenic differentiation study 

showed that GAG content and re-differentiation capacity (GAG/DNA) of HACs were 

significantly higher in the Vis + Ru/SPS samples than their Vis + LAP and UV + I2959 

counterparts after long-term 35 day culture. As both LAP and Ru/SPS require visible light for 

photo-initiation, the difference observed in cell viability, metabolic activity and re-

differentiation capacity, might be due to the diverse radical generation mechanism. We 

hypothesise that the Ru + SPS system has a slower but more sustained radical generation rate 

being a non-cleavage type 2 photoinitiator that undergoes a self-recycling mechanism (Figure 

1) [35,39,48,58]. It has been previously reported that this ability to re-initiate polymerisation 

allows type 2 photoinitiators to be less affected by oxygen inhibition [58]. Further covalent 

incorporation of chondrogenic factors or growth factor-binding peptides within Vis + Ru/SPS 

Gel-MA hydrogels (such as TGF-ß1, hyaluronic acid, heparin) would likely further enhance 

this chondrogenic niche [12,59]. 

The clinical relevance of these visible light initiating systems are particularly appealing 

for cell delivery or as space-fillers post augmentation, where in situ photo-curing typically 

requires high light intensity to minimise both oxygen inhibition and light attenuation. We 

demonstrated that the UV + I2959 system has a limited light penetration depth and can be 

attenuated during photo-crosslinking of constructs greater than 2 mm in thickness. Although a 

maximum penetration depth of 6 mm could be achieved with UV, variations in physical 

properties (sol fraction and mass swelling ratio) and cell viability were detected, indicating an 

inhomogeneous and sub-optimal crosslinking density throughout the construct. Our findings 

correlate to previous studies which also highlighted the limited penetration depth of UV light 

in either photo-curing of dental resin [60], photo-responsive polymers  [61,62] or transdermal 

photo-polymerisation [23]. The Vis + Ru/SPS system showed an added advantage in having 

enhanced penetration depth with homogenous crosslinking density and cell viability 
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throughout a 10 mm thick construct. Furthermore, we have also reported that the Vis + Ru/SPS 

system is less susceptible to oxygen inhibition compared to the UV + I2959 system, allowing 

fabrication of large 3D bioprinted constructs with good shape fidelity [39]. In a transdermal 

polymerisation setup, we observed that a visible light intensity of 30 mW/cm2 was enough to 

transmit through the murine skin and enable photo-crosslinking of the Gel-MA + 0.2/2 

(mM/mM) Ru/SPS macromer. In contrast, using the same UV intensity and 0.05wt% I2959 

did not result in successful hydrogel fabrication, highlighting the limited skin penetration and 

transmittance of light in the UV range. Lin et al. previously showed that a combination of 

higher UV intensity (40 mW/cm2) and I2959 concentration (0.5wt%) was indeed able to 

facilitate transdermal polymerisation of Gel-MA hydrogels [63]. However, we showed that the 

Vis + Ru/SPS system is significantly more efficient where lower visible light intensity and 

Ru/SPS concentrations were sufficient to transdermally fabricate hydrogels of similar quality 

to the controls. Although the murine skin model (0.5 mm) used in this study is thinner, it does 

consist of three distinctive layers (epidermis, dermis and hypodermis) similarly to human skin 

(1 – 2 mm). The cytotoxicity of the transition metal Ru might raise some concerns for use in 

clinical applications. Therefore, we conducted a cell growth inhibition assay to assess the 

toxicity of Ru in accordance to the ISO10993 standard. We observed that the concentration of 

Ru (0.2 mM) used in this study is below the accepted cytotoxicity threshold (<30%, Fig S1). 

This result is in agreement with a previous study conducted by Elvin et al., where even a 

concentration as high as 1 mM of Ru was not cytotoxic [10]. In the same study, Elvin et al. 

also showed that gelatin-tyramines were fabricated into tissue sealants using 1/20 Ru/SPS 

(mM/mM) and showed minimal inflammatory response and no adverse cytotoxic reactions 

based on histological analysis [10]. Similarly, our in vivo subcutaneous study also displayed 

that the Gel-MA hydrogels fabricated using Vis + Ru/SPS showed no significant difference in 

host tissue reaction in comparison to the UV + I2959 counterparts (Figure 8C-F).     

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 32 of 37 
 

We believe that adopting the Vis + Ru/SPS system offers advantages over the UV 

irradiation system with respect to not only promoting cell viability and function within in situ 

photo-cured hydrogels or 3D constructs, but importantly to host cells in surrounding healthy 

issue that would also be exposed to high light intensity, particularly during the photo-

polymerisation of thick or large constructs. Furthermore, we purport that the applicability of 

the Vis + Ru/SPS system may be of particular benefit over Vis + LAP and  UV + I2959 systems 

in the field of biofabrication or 3D bioprinting of thick, cell-laden constructs, where again, high 

light intensity or high photo-initiator concentration are generally necessary to maintain shape 

fidelity of biofabricated constructs as well as obtain maximum cell survival [39].   

5. Conclusions 

 We have demonstrated and optimised the use of the visible light photo-initiators 

(Ru/SPS) to fabricate Gel-MA hydrogels. The fabricated gels offered similar physico-chemical 

and mechanical properties compared to those crosslinked using conventionally adopted UV + 

I2959 photo-initiator system. HACs encapsulated in visible light polymerised gels 

demonstrated superior cell viability and metabolic activity, as well as greater GAG content and 

re-differentiation capacity (GAG/DNA) as compared to UV crosslinked Gel-MA hydrogels. 

Furthermore, the enhanced penetration depth observed for the visible light system offers added 

benefits for in situ photo-curing applications and fabrication of thick hydrogel constructs. This 

study highlights the potential of this Vis + Ru/SPS system for fabrication of Gel-MA gels for 

not only cartilage engineering, but also other tissue engineering applications including cell 

delivery and in-situ photo-curing. 
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