1,963 research outputs found

    Li+D Reaction in Pd and Au for 30<E_d<75 keV(I. Nuclear Physics)

    Get PDF
    Thick target yields of α particles emitted in the ^Li (d, α) ^He reactions in PdLi_x and AuLi_x were measured as a function of the bombarding energy between 30 and 75 keV. It was found that the reaction rate in Pd at lower energies is enhanced strongly over the one predicted by the cross section for the reaction with bare nuclei, but no enhancement is observed in Au. A screening energy is introduced to reproduce the excitation function of the thick target yield for each metal. The deduced value for Pd amounts to 1500±310 eV, whereas it is only 60±150 eV for Au. The enhancement in the Pd case cannot be explained by electron screening alone but suggests the existence of an additional and important mechanism of screening in metal

    Nucleon Polarizibilities for Virtual Photons

    Get PDF
    We generalize the sum rules for the nucleon electric plus magnetic polarizability ÎŁ=α+ÎČ\Sigma=\alpha+\beta and for the nucleon spin-polarizability Îł\gamma, to virtual photons with Q2>0Q^2>0. The dominant low energy cross sections are represented in our calculation by one-pion-loop graphs of relativistic baryon chiral perturbation theory and the Δ(1232)\Delta(1232)-resonance excitation. For the proton we find good agreement of the calculated ÎŁp(Q2)\Sigma_p(Q^2) with empirical values obtained from integrating up electroproduction data for Q2<0.4GeV2Q^2<0.4 GeV^2. The proton spin-polarizability Îłp(Q2)\gamma_p(Q^2) switches sign around Q2=0.4GeV2Q^2= 0.4 GeV^2 and it joins smoothly the "partonic" curve, extracted from polarized deep-inelastic scattering, around Q2=0.7GeV2Q^2=0.7 GeV^2. For the neutron our predictions of ÎŁn(Q2)\Sigma_n(Q^2) and Îłn(Q2)\gamma_n(Q^2) agree reasonably well at Q2=0Q^2=0 with existing determinations. Upcoming (polarized) electroproduction experiments will be able to test the generalized polarizability sum rules investigated here.Comment: 12 pages, 5 figures, submittes to Nuclear Physics

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    Comparison of Relativistic Nucleon-Nucleon Interactions

    Get PDF
    We investigate the difference between those relativistic models based on interpreting a realistic nucleon-nucleon interaction as a perturbation of the square of a relativistic mass operator and those models that use the method of Kamada and Gl\"ockle to construct an equivalent interaction to add to the relativistic mass operator. Although both models reproduce the phase shifts and binding energy of the corresponding non-relativistic model, they are not scattering equivalent. The example of elastic electron-deuteron scattering in the one-photon-exchange approximation is used to study the sensitivity of three-body observables to these choices. Our conclusion is that the differences in the predictions of the two models can be understood in terms of the different ways in which the relativistic and non-relativistic SS-matrices are related. We argue that the mass squared method is consistent with conventional procedures used to fit the Lorentz-invariant cross section as a function of the laboratory energy.Comment: Revtex 13 pages, 5 figures, corrected some typo

    Lattice Calculation of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    We report on a lattice QCD calculation of the strangeness magnetic moment of the nucleon. Our result is GMs(0)=−0.36±0.20G_M^s(0) = - 0.36 \pm 0.20 . The sea contributions from the u and d quarks are about 80% larger. However, they cancel to a large extent due to their electric charges, resulting in a smaller net sea contribution of −0.097±0.037ÎŒN - 0.097 \pm 0.037 \mu_N to the nucleon magnetic moment. As far as the neutron to proton magnetic moment ratio is concerned, this sea contribution tends to cancel out the cloud-quark effect from the Z-graphs and result in a ratio of −0.68±0.04 -0.68 \pm 0.04 which is close to the SU(6) relation and the experiment. The strangeness Sachs electric mean-square radius E_E is found to be small and negative and the total sea contributes substantially to the neutron electric form factor.Comment: 10 pages, 5 figures, LaTex, UK/97-23, ADP-97-55/T28

    Long range absorption in the scattering of 6He on 208Pb and 197Au at 27 MeV

    Get PDF
    Quasi-elastic scattering of 6He at E_lab=27 MeV from 197Au has been measured in the angular range of 6-72 degrees in the laboratory system employing LEDA and LAMP detection systems. These data, along with previously analysed data of 6He + 208Pb at the same energy, are analyzed using Optical Model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6He induced reactions.Comment: 10 pages, 10 figures, minor corrections. To appear in Nucl. Phys.

    Deuteron Electroweak Disintegration

    Get PDF
    We study the deuteron electrodisintegration with inclusion of the neutral currents focusing on the helicity asymmetry of the exclusive cross section in coplanar geometry. We stress that a measurement of this asymmetry in the quasi elastic region is of interest for an experimental determination of the weak form factors of the nucleon, allowing one to obtain the parity violating electron neutron asymmetry. Numerically, we consider the reaction at low momentum transfer and discuss the sensitivity of the helicity asymmetry to the strangeness radius and magnetic moment. The problems coming from the finite angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail: [email protected] , [email protected]
    • 

    corecore