1,649 research outputs found

    Chain riveting

    Get PDF
    n/

    Black hole and brane production in TeV gravity: A review

    Get PDF
    In models with large extra dimensions particle collisions with center-of-mass energy larger than the fundamental gravitational scale can generate non-perturbative gravitational objects such as black holes and branes. The formation and the subsequent decay of these super-Planckian objects would be detectable in particle colliders and high energy cosmic ray detectors, and have interesting implications in cosmology and astrophysics. In this paper we present a review of black hole and brane production in TeV-scale gravity.Comment: 40 pages, 14 figures, submitted to the Int. Jou. Mod. Phys.

    Effective action and semiclassical limit of spin foam models

    Full text link
    We define an effective action for spin foam models of quantum gravity by adapting the background field method from quantum field theory. We show that the Regge action is the leading term in the semi-classical expansion of the spin foam effective action if the vertex amplitude has the large-spin asymptotics which is proportional to an exponential function of the vertex Regge action. In the case of the known three-dimensional and four-dimensional spin foam models this amounts to modifying the vertex amplitude such that the exponential asymptotics is obtained. In particular, we show that the ELPR/FK model vertex amplitude can be modified such that the new model is finite and has the Einstein-Hilbert action as its classical limit. We also calculate the first-order and some of the second-order quantum corrections in the semi-classical expansion of the effective action.Comment: Improved presentation, 2 references added. 15 pages, no figure

    3d Spinfoam Quantum Gravity: Matter as a Phase of the Group Field Theory

    Get PDF
    An effective field theory for matter coupled to three-dimensional quantum gravity was recently derived in the context of spinfoam models in hep-th/0512113. In this paper, we show how this relates to group field theories and generalized matrix models. In the first part, we realize that the effective field theory can be recasted as a matrix model where couplings between matrices of different sizes can occur. In a second part, we provide a family of classical solutions to the three-dimensional group field theory. By studying perturbations around these solutions, we generate the dynamics of the effective field theory. We identify a particular case which leads to the action of hep-th/0512113 for a massive field living in a flat non-commutative space-time. The most general solutions lead to field theories with non-linear redefinitions of the momentum which we propose to interpret as living on curved space-times. We conclude by discussing the possible extension to four-dimensional spinfoam models.Comment: 17 pages, revtex4, 1 figur

    Euclidean three-point function in loop and perturbative gravity

    Full text link
    We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of gamma<1. We find results consistent with Regge calculus in the limit gamma->0 and j->infinity. We also compute the tree-level three-point function of perturbative quantum general relativity in position space, and discuss the possibility of directly comparing the two results.Comment: 16 page

    Photon-axion mixing and ultra-high-energy cosmic rays from BL Lac type objects -- Shining light through the Universe

    Full text link
    Photons may convert into axion like particles and back in the magnetic field of various astrophysical objects, including active galaxies, clusters of galaxies, intergalactic space and the Milky Way. This is a potential explanation for the candidate neutral ultra-high-energy (E>10^18 eV) particles from distant BL Lac type objects which have been observed by the High Resolution Fly's Eye experiment. Axions of the same mass and coupling may explain also TeV photons detected from distant blazars.Comment: Revtex 10 pages, 6 figures. V.2: QED dispersion effects taken into account; principal results unchanged. V3: misprints and sqrt(4*pi) factors in Gauss to eV conversion corrected; conclusions unchange

    Gamma-ray emission from the solar halo and disk: a study with EGRET data

    Full text link
    Context: The Sun has recently been predicted to be an extended source of gamma-ray emission, produced by inverse-Compton (IC) scattering of cosmic-ray (CR) electrons on the solar radiation field. The emission was predicted to be extended and a confusing foreground for the diffuse extragalactic background even at large angular distances from the Sun. The solar disk is also expected to be a steady gamma-ray source. While these emissions are expected to be readily detectable in the future by GLAST, the situation for available EGRET data is more challenging. Aims: The theory of gamma-ray emission from IC scattering on the solar radiation field by Galactic CR electrons is given in detail. This is used as the basis for detection and model verification using EGRET data. Methods: We present a detailed study of the solar emission using the EGRET database, accounting for the effect of the emission from 3C 279, the moon, and other sources, which interfere with the solar emission. The analysis was performed for 2 energy ranges, above 300 MeV and for 100-300 MeV, as well as for the combination to improve the detection statistics. The technique was tested on the moon signal, with our results consistent with previous work. Results: Analyzing the EGRET database, we find evidence of emission from the solar disk and its halo. The observations are compared with our model for the extended emission. The spectrum of the solar disk emission and the spectrum of the extended emission have been obtained. The spectrum of the moon is also given. Conclusions: The observed intensity distribution and the flux are consistent with the predicted model of IC gamma-rays from the halo around the Sun.Comment: Corrected typos, added acknowledgements. A&A in pres

    Coupling gauge theory to spinfoam 3d quantum gravity

    Full text link
    We construct a spinfoam model for Yang-Mills theory coupled to quantum gravity in three dimensional riemannian spacetime. We define the partition function of the coupled system as a power series in g_0^2 G that can be evaluated order by order using grasping rules and the recoupling theory. With respect to previous attempts in the literature, this model assigns the dynamical variables of gravity and Yang-Mills theory to the same simplices of the spinfoam, and it thus provides transition amplitudes for the spin network states of the canonical theory. For SU(2) Yang-Mills theory we show explicitly that the partition function has a semiclassical limit given by the Regge discretization of the classical Yang-Mills action.Comment: 18 page
    • …
    corecore