1,770 research outputs found

    Bimodal Counting Statistics in Single Electron Tunneling through a Quantum Dot

    Get PDF
    We explore the full counting statistics of single electron tunneling through a quantum dot using a quantum point contact as non-invasive high bandwidth charge detector. The distribution of counted tunneling events is measured as a function of gate and source-drain-voltage for several consecutive electron numbers on the quantum dot. For certain configurations we observe super-Poissonian statistics for bias voltages at which excited states become accessible. The associated counting distributions interestingly show a bimodal characteristic. Analyzing the time dependence of the number of electron counts we relate this to a slow switching between different electron configurations on the quantum dot

    Excitation of Na D-line radiation in collisions of sodium atoms with internally excited H2, D2, and N2

    Get PDF
    Excitation of D-line radiation in collisions of Na atoms with vibrationally excited N2, H2 and D2 was studied in two modulated crossed beam experiments. In both experiments, the vibrational excitation of the molecules was provided by heating the molecular beam source to temperatures in the range of 2000 to 3000 K, which was assumed to give populations according to the Boltzmann expression. In the first experiment, a total rate coefficient was measured as a function of molecular beam temperature, with absolute calibration of the photon detector being made using the black body radiation from the heated molecular beam source. Since heating affects both the internal energy and the collisional kinetic energy, the first experiment could not determine the relative contributions of internal energy transfer versus collisional excitation. The second experiment achieved partial separation of internal versus kinetic energy transfer effects by using a velocity-selected molecular beam. Using two simple models for the kinetic energy dependence of the transfer cross section for a given change in vibrational quantum number, the data from both experiments were used to determine parameters in the models

    Scaling laws for random walks in long-range correlated disordered media

    Full text link
    We study the scaling laws of diffusion in two-dimensional media with long-range correlated disorder through exact enumeration of random walks. The disordered medium is modelled by percolation clusters with correlations decaying with the distance as a power law, rar^{-a}, generated with the improved Fourier filtering method. To characterize this type of disorder, we determine the percolation threshold pcp_{\text c} by investigating cluster-wrapping probabilities. At pcp_{\text c}, we estimate the (sub-diffusive) walk dimension dwd_{\text w} for different correlation exponents aa. Above pcp_{\text c}, our results suggest a normal random walk behavior for weak correlations, whereas anomalous diffusion cannot be ruled out in the strongly correlated case, i.e., for small aa.Comment: 11 pages, 6 figure

    A Redshift Survey of Nearby Galaxy Groups: the Shape of the Mass Density Profile

    Full text link
    We constrain the mass profile and orbital structure of nearby groups and clusters of galaxies. Our method yields the joint probability distribution of the density slope n, the velocity anisotropy beta, and the turnover radius r0 for these systems. The measurement technique does not use results from N-body simulations as priors. We incorporate 2419 new redshifts in the fields of 41 systems of galaxies with z < 0.04. The new groups have median velocity dispersion sigma=360 km/s. We also use 851 archived redshifts in the fields of 8 nearly relaxed clusters with z < 0.1. Within R < 2 r200, the data are consistent with a single power law matter density distribution with slope n = 1.8-2.2 for systems with sigma < 470 km/s, and n = 1.6-2.0 for those with sigma > 470 km/s (95% confidence). We show that a simple, scale-free phase space distribution function f(E,L^2) ~ (-E)^(alpha-1/2) L^(-2 \beta) is consistent with the data as long as the matter density has a cusp. Using this DF, matter density profiles with constant density cores (n=0) are ruled out with better than 99.7% confidence.Comment: 22 pages; accepted for publication in the Astrophysical Journa

    Non-invasive detection of charge-rearrangement in a quantum dot in high magnetic fields

    Get PDF
    We demonstrate electron redistribution caused by magnetic field on a single quantum dot measured by means of a quantum point contact as non-invasive detector. Our device which is fabricated by local anodic oxidation allows to control independently the quantum point contact and all tunnelling barriers of the quantum dot. Thus we are able to measure both the change of the quantum dot charge and also changes of the electron configuration at constant number of electrons on the quantum dot. We use these features to exploit the quantum dot in a high magnetic field where transport through the quantum dot displays the effects of Landau shells and spin blockade. We confirm the internal rearrangement of electrons as function of the magnetic field for a fixed number of electrons on the quantum dot.Comment: 4 pages, 5 figure

    Vorticity Budget of Weak Thermal Convection in Keplerian disks

    Get PDF
    By employing the equations of mean-square vorticity (enstrophy) fluctuations in strong shear flows, we demonstrate that unlike energy production of turbulent vorticity in nonrotating shear flows, the turbulent vorticity of weak convection in Keplerian disks cannot gain energy from vortex stretching/tilting by background shear unless the asscoiated Reynolds stresses are negative. This is because the epicyclic motion is an energy sink of the radial component of mean-square turbulent vorticity in Keplerian disks when Reynolds stresses are positive. Consequently, weak convection cannot be self-sustained in Keplerian flows. This agrees with the results implied from the equations of mean-square velocity fluctuations in strong shear flows. Our analysis also sheds light on the explanation of the simulation result in which positive kinetic helicity is produced by the Balbus-Hawley instability in a vertically stratified Keplerian disk. We also comment on the possibility of outward angular momentum transport by strong convection based on azimuthal pressure perturbations and directions of energy cascade.Comment: 8 pages, 1 figure, emulateapj.sty, revised version in response to referee's comments, accepted by Ap

    Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem

    Full text link
    Two letters from William Burnside have recently been found in the Nachlass of Robert Fricke that contain instances of Burnside's Problem prior to its first publication. We present these letters as a whole to the public for the first time. We draw a picture of these two mathematicians and describe their activities leading to their correspondence. We thus gain an insight into their respective motivations, reactions, and attitudes, which may sharpen the current understanding of professional and social interactions of the mathematical community at the turn of the 20th century.Comment: documentclass amsart, 17 page

    Pion-Lambda-Sigma Coupling Extracted from Hyperonic Atoms

    Full text link
    The latest measurements of the atomic level width in Sigma-hyperonic Pb atom offer the most accurate datum in the region of low-energy Sigma-hyperon physics. Atomic widths are due to the conversion of Sigma-nucleon into Lambda-nucleon. In high angular momentum states this conversion is dominated by the one-pion exchange. A joint analysis of the data of the scattering of negative-Sigma on proton converting into a Lambda and a neutron and of the atomic widths allows to extract a pseudovector pion-hyperon-Sigma coupling constant of 0.048 with a statistical error of +-0.005 and a systematic one of +-0.004. This corresponds to a pseudoscalar coupling constant of 13.3 with a statistical uncertainty of 1.4 and a systematic one of 1.1.Comment: 12 pages, 1 figure, Use of Revtex.st
    corecore