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Bimodal counting statistics in single-electron tunneling through a quantum dot
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We explore the full counting statistics of single-electron tunneling through a quantum dot using a quantum
point contact as noninvasive high bandwidth charge detector. The distribution of counted tunneling events is
measured as a function of gate and source-drain voltages for several consecutive electron numbers on the
quantum dot. For certain configurations, we observe super-Poissonian statistics for bias voltages at which
excited states become accessible. The associated counting distributions interestingly show a bimodal charac-
teristic. Analyzing the time dependence of the number of electron counts, we relate this to a slow switching
between different electron configurations on the quantum dot.
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I. INTRODUCTION

The dynamics of electron transport through a quantum dot
cannot be accessed by measurements of the average (dc) cur-
rent alone. Additional information was successfully gained
from measurements of the shot noise'=> and recently even of
the third moment* of the current through the quantum dot.
However, it is hard to see how such measurements could be
extended to even higher moments.

Recently, an alternative approach was pointed out for
semiconductor quantum dots. Besides a direct measurement
of the resonant tunneling current through the dot, one can
also measure the charge on the quantum dot using a nearby
quantum point contact as a noninvasive and highly sensitive
detector.>~® For sufficiently low tunneling rates and high de-
tector bandwidth, individual tunneling events onto and off
the dot can be resolved.”!? This allows a measurement of the
full counting statistics for tunneling through a quantum
dot''"13 and the analysis of conditional counting effects.!*!>

We have implemented a measurement of single-electron
counting with large bandwidth. This enables us to measure
the full counting statistics for single-electron transport
through a quantum dot as a function of both bias and gate
voltages for a series of consecutive electron numbers on the
dot. We observe well understood counting distributions for
tunneling through the ground states of the quantum dot.
However, interestingly, our analysis reveals also the occur-
rence of bimodal counting distributions for certain numbers
of electrons on the dot and sufficient bias voltage. We relate
this to a slow switching between two different quantum dot
configurations that have distinct tunnel couplings to the
leads.

I1. DEVICE AND EXPERIMENTAL TECHNIQUES

Our device is based on a GaAs/AlGaAs heterostructure
containing a two-dimensional electron system (2DES) 34 nm
below the surface. The electron density is n=4.59
X 1015 m~2, the mobility is u=64.3 m?/V s. We have used
an atomic force microscope (AFM) to define the quantum
dot (QD) and the quantum point contact (QPC) structure by
local anodic oxidation on the surface;'®!7 the 2DES below
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the oxidized surface is depleted and insulating areas can be
written.

An AFM image of our device is presented in Fig. 1(a).
The bright walls depict the insulating lines written by the
AFM. The QPC (left area) is separated from the QD struc-
ture (right area) by an insulating line. The QPC can be tuned
using the in-plane gate G3. The QD is coupled to source and
drain via two tunneling barriers, which can be separately
controlled with gates G1 and G2. These gates are also used
to set the number of electrons in the QD. We use two elec-
trically separated circuits for simultaneous conductance mea-
surements through the QPC and the QD. The experimental
setup allows us to resolve tunneling times 7 as small as
30 us. In Fig. 1(b), the time resolved current through the
QPC is shown. Distinct changes in the current occur for ev-
ery change of the number of electrons on the nearby QD. For
example, the current drops down whenever an electron enters
the dot and thus the number of electron changes from N to
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FIG. 1. (Color online) Operating principle of the device contain-
ing a QD and a QPC. (a) AFM image of the device and gate con-
figuration. (b) Time segment of the QPC signal, tunneling times 7,
and 7, are marked. (c) Distribution of tunneling times extracted
from 100 time segments. Each time segment spans 5 ms. The dis-
tribution for 7, is shifted by a factor of 5 for clarity. (d) Distribution
of tunneling events for same measurement compared to a theoreti-
cal model calculation. In total, 446 electrons passed the QD during
the measurement leading to this distribution.
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N+1. Due to the sufficient large bias voltage of 0.2 mV,
electrons are entering the QD solely from the source and are
leaving the QD to the drain. In the time segment shown here,
five traversing electrons can be identified. Additionally, the
tunneling times 7, and 7., can be extracted from the QPC
signal, where 7, is the time until an additional electron hops
from source onto the dot and 7, is the time that an electron
needs to leave the dot into the drain.

The statistical distributions of the tunneling times 7, and
Tou are shown in Fig. 1(c). They follow an exponential de-
cay, where the exponent is given by the tunneling rates I’y
and Ty, respectively. We find T';,=1.7kHz and [,
=1.9 kHz. Alternatively, one can also determine these rates
directly from the mean value of the tunneling times using the
relation T'jyou)={Tin(ouy)~"- We find a good agreement be-
tween both methods if the rates are small compared to the
bandwidth of our measurement. For fast rates, we will miss a
number of short transitions, which affects the mean of the
tunneling times.'® Here, the analysis of the slope of the dis-
tribution yields superior results.

In this paper, we will additionally apply a further method
to extract the statistical properties of the single-electron
transport. The measured long time trace is divided into a
large number of short segments, as depicted in Fig. 1(b), and
the number of transitions n from N+1 to N electrons is
counted for each segment.'! We now determine the statistical
distribution of these counts 7, as depicted in Fig. 1(d). The
experimental results (bars) compare well to the theoretical
model (line) calculated without free parameters from the
mean of 7, and 7.,.'"!° From the distribution, one can ex-
tract not only the mean value of n but also higher moments
like the Fano factor «, which is given by the second moment
of the obtained distribution divided by the mean value (n),
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III. NONLINEAR TRANSPORT

Now, we will study the statistics in detail for nonlinear
transport through the QD. In Fig. 2(a), the rate of electrons
per second traversing the QD as deduced from (n) is shown
as a function of gate voltage and bias. Each data point rep-
resents a full measurement of the distribution of counting
events and the rate is determined from the mean value (n).!!
We clearly observe the so-called Coulomb diamonds well
known from conventional transport experiments. Clear Cou-
lomb blockade regions are found as well as discrete regions
of finite current due to single-electron transport through the
ground state and for large bias also through excited states of
the QD. The QPC detector can also be used to determine the
mean charge of the QD.? For this, we analyzed the dc
through the QPC and extracted the mean charge information.
The changes in the mean charge of the QD are shown as
lines in Fig. 2. The dc charge detection compares well with
the results of the real-time measurement. When the mean
charge of the dot changes, a distinct step in the counting rate
can be seen.
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FIG. 2. (Color online) (a) Counting rate of electrons passing the
QD as a function of gate voltage and source-drain voltage. The lines
mark changes of the average QD occupation, which are deduced
from the dc average of the detector signal. (b) Fano factor a ex-
tracted from the full counting statistics for the same range. For the
white areas above —130 mV, at least one of the tunneling rates
becomes too high in order to extract a reliable counting statistic.

In Fig. 2(b), the Fano factor « as determined from Eq. (1)
is shown for the same measurement. It turns out that « is
between 0.5 and 1 for most of the QD configurations as one
would expect for single-electron transport through the
ground state of a QD.? However, for a special area marked
by the red triangle in Fig. 2 (region A), super-Poissonian
noise is observed. In the marked range, not only the ground
state but also excited states take part in transport. While the
ground-state transport below region A shows sub-Poissonian
characteristic, « rises dramatically when an excited state en-
ters the transport window. A similar behavior can also be
observed for the opposite transport direction at the next
higher electron number (Fig. 2, region B). Below region B,
the ground-state transport is strongly suppressed but when
the excited state takes part in the transport, the current rises
and an a>1 is observed.

IV. BIMODAL DISTRIBUTION

We now analyze the counting statistics for region A
marked by the triangle. For finite bias but only the ground
state inside the bias window (directly below region A), we
find no special behavior. Applying the same procedure, as
described for Fig. 1(c), we obtain tunneling rates of I'y,
=34 kHz and I';,=2.8 kHz for V=148 mV and V=
—143 mV. However, as we cross into region A, i.e., as an
excited state enters the bias window, we find a completely
changed counting statistic with a bimodal distribution. A
characteristic distribution is shown in Fig. 3(a). In the distri-
bution, two clearly distinct maxima can be identified instead
of the single peak structure of the usual distribution function.
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FIG. 3. (Color online) (a) Typical bimodal distribution of elec-
trons passing through the dot for the area marked by a triangle in
Fig. 2. Transport channels are marked by a number and a different
background. The experimental results (bars) compare well to the
basic model calculation (line). (b) Time evolution of the detected
number of electrons per time segment. A switching between the two
transport channels occurs. (c) Simple scheme of the experimental
findings. (d) Distribution of the tunneling times (o, for both
transport channels (dots). Short tunneling times (light gray) are sup-
pressed due to limited bandwidth. The denoted tunneling rates
Iin(ouy) are extracted from the exponential fit (line).

Interestingly, one of the maxima emerges at a lower number
of counts than the mean (n) observed for tunneling through
the ground state before an excited state comes into play. How
does the distribution relate to the rate and the Fano factor
displayed in Fig. 2? Firstly, the bimodal structure leads to a
significantly higher width of the distribution that results in
the strong increase of the Fano factor. In contrast, the mean
value does not show such a dramatic change [compare Fig.
2(a)], whereas the mean value of the bimodal distribution
itself has a fairly low probability to be observed.

To study the origin of the bimodality, we now analyze the
evolution of the counted electron events with time. This is
shown in Fig. 3(b). Depicted is the number of electrons en-
tering the QD in a given time segment in chronological or-
der. By this, we can examine the temporal evolution of all
time segments contained in the distribution of Fig. 3(a). As
expected from the bimodal distribution, there are two sepa-
rated ranges where the majority of events are accumulated.
These are marked by the two darker bands in the back of
Figs. 3(a) and 3(b). Moreover, a switching between these two
ranges can be observed. Typically, the system stays in each
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of this two ranges for a time 7, of 50—250 ms which is fairly
long compared to the typical tunneling times {7/, of about
0.2—1 ms. For the second region showing super-Poissonian
noise (Fig. 2, region B), we found the same bimodal charac-
teristic and also a comparable switching behavior. Therefore,
this bimodality seems to be a more general feature observ-
able at different electron numbers.

Our observations can be explained by the existence of two
different QD configurations. Each configuration provides a
transport channel for electrons. This behavior leads to the
super-Poissonian noise but differs from the situation de-
scribed for multilevel quantum dots.!'3!

V. TRANSPORT CHANNELS STUDIED INDIVIDUALLY

To acquire a deeper understanding of the ongoing pro-
cesses, we analyzed the tunneling times of the two transport
channels in detail. For this, we individually studied tunneling
events that can be related to one of the two QD configura-
tions.

The resulting distributions of the tunneling times i, (ouy)
are shown in Fig. 3(d) separately for configurations T (first
and third graphs) and II (second and fourth graphs). All sets
of data were fitted by exponential decay to extract the tun-
neling rates. While the tunneling barriers were roughly sym-
metric for the ground state as deduced from similar values of
I, and T'y, (see Fig. 1 and the values given for V
=1.48 mV), they get clearly asymmetric for the analyzed
situation.

When the first excited state enters the transport window,
the tunneling rate I';, has risen rather evenly for both con-
figurations I (6.0 kHz) and II (5.7 kHz). Both configurations
seem to differ only slightly in the coupling to the source lead.
For the drain lead, the result is different. I'j, for configura-
tion T (3.6 kHz) is still comparable to the ground state. In
contrast, configuration II shows a tunneling rate I, of only
1 kHz that is far less than the outgoing tunneling rate of the
ground-state transport. When the QD is in configuration II,
tunneling off the dot is suppressed as the QD seems to
couple less efficiently to the drain lead.

VI. TWO CHANNEL MODEL

We can model the strong bimodality of the counting dis-
tribution assuming two independent transport channels.
Starting from the full counting statistics theory'? for single
state transport through a QD, we combine two distribution
functions to model our experimental results. The probability
to measure a number n of traversing electrons is given by

T d P d
P(n) — qf e—Sl(X)—nX_X + (1 _ q)f 6—52(§)—n§_g’ (2)
. 2 o 2

m

where S, and S, are the generating functions for the separate
transport channels and ¢ is the probability to detect transport
through channel I. The generating function of a single level
QD has been calculated for unidirectional tunneling as ob-
served at sufficiently large bias,!”
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We use the tunneling rates extracted individually for the two
QD configurations [Fig. 3(d)], which leaves only g as the
remaining free parameter. The resulting distribution function
shown in Fig. 3(a) (dashed line) was received for g=0.51.
The good agreement of model and experimental data further
confirms the idea of a switching between two dot configura-
tions, where the dynamics of each configuration individually
is described by a single pair of tunneling rates I';, and I',.

The most likely nature of the different QD configurations
is the excitation of an electron into a nonequilibrium single
particle state that couples only weakly to source and drain. If
the ground-state transition is given by (N)—(N+1)— (N),
we could relate this to configuration I. Thus, the change of
configuration I to IT would involve a process (N) — (N+17)
—(N") with (N) and (N+1) the ground states for N and N
+1 electrons and (N*) an excited state. If the lowest lying
free single-particle state is only weakly coupled, we can
carry a single-electron current in the cycle (N*) — (N+17)
—(N") [compare Fig. 3(c)] until the less probable (N+1°)
— (N) transition reinstates configuration I (ground-state tran-
sition).

The two configurations can arise from two origins: spin or
charge. We find that the bimodality only appears when ex-
cited states with a significant excitation energy of 0.3 meV
are accessible. We assume that the occurrence of two trans-
port channels is caused by two different charge configura-
tions. A change of the spin configuration should mainly
change the tunneling rate into the dot due to a change of spin
selection rule and should have only small effect on the out-
going rate. In contrast, we observe for both configurations
roughly the same tunneling rate for electrons entering the
QD, while a significant difference occurs in the outgoing
rate. The experimental results therefore favor a charge-type
effect.

So far we focused on the two dot configurations and the
transport cycles (N)—(N+1)—(N) and (N')—(N+1")
—(N"). For the characterization of the less probable (N
+1") = (N) or (N)— (N+1%) transition, we have to analyze
the switching process in more detail.

For this, we extract the switching events from the experi-
mental data. The time the dot stays in configuration I is
named 7 and the occupation time of configuration II is
named 7. To extract the switching times, we have analyzed
many time segments like the one shown in the lower part of
Fig. 3(b). For each segment, the number of switching pro-
cesses and the times 7; and 77 between the switching events
are determined. In Fig. 4(a), the statistics of the observed
switching events is shown. We find the center of the distri-
bution at (ngich =3 switching events per second. The distri-
bution shows a width of about 2.5, which corresponds ap-
proximately to 50% of the width of a Poissonian distribution.
Thus, the switching is a sub-Poissonian process.

The statistical distributions of the switching times 7y and
7 are shown in Fig. 4(b). They follow an exponential decay,
where the exponent is given by the inverse value of the mean
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FIG. 4. (Color online) (a) Distribution of switching events dur-
ing a 1 s time interval. The experimental data (bars) compare well
to the theoretical model of a two level system (dotted line). (b)
Statistical distribution of the switching times 7y, and 7,y,. From an
exponential fit, one can determine the average occupation time of
the two dot states.

switching times. From the exponential fit (line), we can ex-
tract the mean value of the switching times {7;)=130 ms and
(mp)=75 ms. The mean values of 7y are equivalent to the
average occupation time of the two dot configurations.

The switching process itself can be described as a two
level system with two transition rates I'; and I'y;. To calculate
the theoretical distribution expected for such a system,'” we
need to evaluate the switching rates, which can be obtained
using the relation I'yyy=(7y)~". In Fig. 4(a), the resulting
curve (line) is compared to the experimental result (bars).
The model of a sub-Poissonian two state system describes
the experimental data very well.

VII. CONCLUSION

To conclude, we have shown full counting statistics of
single-electron tunneling through a quantum dot using a
quantum point contact as a noninvasive high bandwidth
charge detector. We observe super-Poissonian noise for cer-
tain QD configurations where excited states take part in elec-
tron transport. For these configurations, a clear bimodality of
the electron counting distribution occurs. We have analyzed
the bimodal distribution in detail and find a slow switching
behavior in the dot transport. We have also analyzed the
tunneling times for both configurations and presented a
model. The good agreement of model and experimental re-
sults confirms the presumption of two independent transport
channels. The switching between two independent transport
channels can be explained by the existence of two different
QD configurations. Its statistical properties agree well with a
theoretical two state model. Finally, we have shown that the
observed super-Poissonian transport arises from a sub-
Poissonian switching process between two dot configurations
each showing a sub-Poissonian transport characteristic.
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