research

Bimodal Counting Statistics in Single Electron Tunneling through a Quantum Dot

Abstract

We explore the full counting statistics of single electron tunneling through a quantum dot using a quantum point contact as non-invasive high bandwidth charge detector. The distribution of counted tunneling events is measured as a function of gate and source-drain-voltage for several consecutive electron numbers on the quantum dot. For certain configurations we observe super-Poissonian statistics for bias voltages at which excited states become accessible. The associated counting distributions interestingly show a bimodal characteristic. Analyzing the time dependence of the number of electron counts we relate this to a slow switching between different electron configurations on the quantum dot

    Similar works