895 research outputs found

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Discovery of an Optical Jet in the BL Lac Object 3C 371

    Full text link
    We have detected an optical jet in the BL Lac object 3C 371 that coincides with the radio jet in this object in the central few kpc. The most notable feature is a bright optical knot 3 arcsec (4 kpc) from the nucleus that occurs at the location where the jet apparently changes its direction by ~30 degrees. The radio, near-infrared and optical observations of this knot are consistent with a single power-law spectrum with a radio-optical spectral index alpha = -0.81. One possible scenario for the observed turn is that the jet is interacting with the material in the bridge connecting 3C 371 to nearby galaxies and the pressure gradient is deflecting the jet significantly.Comment: 11 pages, LaTeX, 4 figures (1 eps, 3 gifs), accepted for publication in ApJ Letter

    A statistical mechanics approach to autopoietic immune networks

    Full text link
    The aim of this work is to try to bridge over theoretical immunology and disordered statistical mechanics. Our long term hope is to contribute to the development of a quantitative theoretical immunology from which practical applications may stem. In order to make theoretical immunology appealing to the statistical physicist audience we are going to work out a research article which, from one side, may hopefully act as a benchmark for future improvements and developments, from the other side, it is written in a very pedagogical way both from a theoretical physics viewpoint as well as from the theoretical immunology one. Furthermore, we have chosen to test our model describing a wide range of features of the adaptive immune response in only a paper: this has been necessary in order to emphasize the benefit available when using disordered statistical mechanics as a tool for the investigation. However, as a consequence, each section is not at all exhaustive and would deserve deep investigation: for the sake of completeness, we restricted details in the analysis of each feature with the aim of introducing a self-consistent model.Comment: 22 pages, 14 figur

    The Spectroscopic Orbit of the Planetary Companion Transiting HD209458

    Get PDF
    We report a spectroscopic orbit with period P = 3.52433 +/- 0.00027 days for the planetary companion that transits the solar-type star HD209458. For the metallicity, mass, and radius of the star we derive [Fe/H] = 0.00 +/- 0.02, M = 1.1 +/- 0.1 solar masses, and R = 1.3 +/- 0.1 solar radii. This is based on a new analysis of the iron lines in our HIRES template spectrum, and also on the absolute magnitude and color of the star, and uses isochrones from four different sets of stellar evolution models. Using these values for the stellar parameters we reanalyze the transit data and derive an orbital inclination of i = 85.2 +/- 1.4 degrees. For the planet we derive a mass of Mp = 0.69 +/- 0.05 Jupiter masses, a radius of Rp = 1.54 +/- 0.18 Jupiter radii, and a density of 0.23 +/- 0.08 grams per cubic cm.Comment: 11 pages, 1 figure, 2 tables, LaTex, aastex, accepted for publication by ApJ Letter

    The role of the microbiome in the neurobiology of social behaviour

    Get PDF
    Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.Peer reviewe

    Multifrequency Radiation of Extragalactic Large-Scale Jets

    Full text link
    Large-scale extragalactic jets, observed to extend from a few to a few hundred kiloparsecs from active galactic nuclei, are now studied over many decades in frequency of electromagnetic spectrum, from radio until (possibly) TeV gamma rays. For hundreds of known radio jets, only about 25 are observed at optical frequencies. Most of them are relatively short and faint, with only a few exceptions, like 3C 273 or M 87, allowing for detailed spectroscopic and morphological studies. Somewhat surprisingly, the large-scale jets can be very prominent in X-rays. Up to now, about 25 jets were detected within the 1 - 10 keV energy range, although the nature of this emission is still under debate. In general, both optical and X-ray jet observations present serious problems for standard radiation models for the considered objects. Recent TeV observations of M 87 suggest the possibility of generating large photon fluxes at these high energies by its extended jet. In this paper we summarize information about multiwavelength emission of the large-scale jets, and we point out several modifications of the standard jet radiation models (connected with relativistic bulk velocities, jet radial stratification and particle energization all the way along the jet), which can possibly explain some of the mentioned puzzling observations. We also comment on gamma-ray emission of the discussed objects.Comment: 29 pages. Modified version, accepted for publication in Chinese Journal of Astronomy and Astrophysic

    Ancient Origins of a Modern Anthropic Cosmological Argument

    Full text link
    Ancient origins of a modern anthropic argument against cosmologies involving infinite series of past events are considered. It is shown that this argument - which in modern times has been put forward by distinguished cosmologists like Paul C. W. Davies and Frank J. Tipler - originates in pre-Socratic times and is implicitly present in the cyclical cosmology of Empedocles. There are traces of the same line of reasoning throughout the ancient history of ideas, and the case of a provocative statement of Thucydides is briefly analyzed. Moreover, the anthropic argument has been fully formulated in the epic of Lucretius, confirming it as the summit of ancient cosmology. This is not only of historical significance but presents an important topic for the philosophy of cosmology provided some of the contemporary inflationary models, particularly Linde's chaotic inflation, turn out to be correct.Comment: 11 pages, no figures; Astronomical and Astrophysical Transactions, accepte

    Direct constraint on the distance of y2 Velorum from AMBER/VLTI observations

    Get PDF
    In this work, we present the first AMBER observations, of the Wolf-Rayet and O (WR+O) star binary system y2 Velorum. The AMBER instrument was used with the telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered spectrally dispersed visibilities, as well as differential and closure phases, with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret these data in the context of a binary system with unresolved components, neglecting in a first approximation the wind-wind collision zone flux contribution. We show that the AMBER observables result primarily from the contribution of the individual components of the WR+O binary system. We discuss several interpretations of the residuals, and speculate on the detection of an additional continuum component, originating from the free-free emission associated with the wind-wind collision zone (WWCZ), and contributing at most to the observed K-band flux at the 5% level. The expected absolute separation and position angle at the time of observations were 5.1±0.9mas and 66±15° respectively. However, we infer a separation of 3.62+0.11-0.30 mas and a position angle of 73+9-11°. Our analysis thus implies that the binary system lies at a distance of 368+38-13 pc, in agreement with recent spectrophotometric estimates, but significantly larger than the Hipparcos value of 258+41-31 pc
    corecore