2,831 research outputs found

    Neutrino CP violating parameters from nontrivial quark-lepton correlation: a S3xGUT model

    Full text link
    We investigate the prediction on the lepton phases in theories with a non trivial correlation between quark (CKM) and lepton (PMNS) mixing matrices. We show that the actual evidence, under the only assumption that the correlation matrix VMV^M product of CKMCKM and PMNSPMNS has a zero in the entry (1,3)(1,3), gives us a prediction for the three CP-violating invariants JJ, S1S_1, and S2S_2. A better determination of the lepton mixing angles will give a strong prediction of the CP-violating invariants in the lepton sector. These will be tested in the next generation experiments. To clarify how our prediction works, we show how a model based on a Grand Unified Theory and the permutation flavor symmetry S3S_3 predicts V13M=0V^M_{13}=0.Comment: 7 pages, 3 figures. V2: new figure adde

    Dynamics of the Australian summer monsoon

    Get PDF
    March 6, 1992.Includes bibliographical references.When a west-east line of deep convection forms over northern Australia, the potential vorticity field begins to change due to the latent heat release, with low level negative and upper level positive anomalies being induced. These potential vorticity patterns can be analytically derived by using a zonal balance model formulated in isentropic and potential latitude coordinates. The associated wind and mass fields can be found by solving an invertibility principle which is valid for these equatorial balanced flows. Since the convectively induced potential vorticity anomalies develop from an initial state which has potential vorticity increasing toward the north, reversed poleward gradients of potential vorticity are produced. The regions of potential vorticity gradient reversal are found on the poleward side of the ITCZ at low levels and on the equatorward side of the ITCZ at upper levels, just as in the observed fields during AMEX. For typical convective heating rates, significant potential vorticity gradient reversals occur quickly - on the order of a few days. This sets the stage for combined barotropic-baroclinic instability, the formation of tropical waves, and t he breakdown of the ITCZ. We can understand the barotropic aspects of this breakdown t rough a normal mode stability analysis of the nondivergent barotropic model with either a hyperbolic tangent shear layer basic state zonal wind or an idealized three region profile in which there is a central (ITCZ) region of anomalous absolute vorticity, surrounded by regions of undisturbed absolute vorticity. The latter model can be solved analytically, which allows direct interpretation of the breakdown in terms of the phase locking and growth of the counterpropagating vorticity anomalies (essentially Rossby waves) located on the two interfaces separating the three regions. In this sense the ITCZ is self-destructive and should not be viewed as a strictly steady state feature of the tropical circulation. In addition, according to this scenario, the potential vorticity dynamics of the Australian region are not unique, but are characterized by an ITCZ formation-breakdown cycle similar to that occurring in other tropical regions such as the tropical east Pacific and western Africa

    Formal Verification of Arithmetic Circuits by Function Extraction

    Get PDF
    The paper presents an algebraic approach to functional verification of gate-level, integer arithmetic circuits. It is based on extracting a unique bit-level polynomial function computed by the circuit directly from its gate-level implementation. The method can be used to verify the arithmetic function computed by the circuit against its known specification, or to extract an arithmetic function implemented by the circuit. Experiments were performed on arithmetic circuits synthesized and mapped onto standard cells using ABC system. The results demonstrate scalability of the method to large arithmetic circuits, such as multipliers, multiply-accumulate, and other elements of arithmetic datapaths with up to 512-bit operands and over 2 million gates. The results show that our approach wins over the state-of-the-art SAT/SMT solvers by several orders of magnitude of CPU time. The procedure has linear runtime and memory complexity, measured by the number of logic gates

    Visualization of amphetamine and its analogues in TLC

    Get PDF
    Derivatisation followed by iodine azide reaction was employed for detection of amphetamines and its analogues in TLC. The derivatisation reaction with phenyl isothiocyanate took place directly on the TLC plate before the developing step. Afterwards, the plate was sprayed with a mixture of sodium azide and starch solution and then exposed to iodine vapour. The obtained limits of detection were compared with other commonly visualization techniques: UV, iodine vapour, Marquis and Simon’s reagents, ninhydrin, Fast Black K

    Stability of radiation-pressure dominated disks. I. The dispersion relation for a delayed heating alpha-viscosity prescription

    Get PDF
    We derive and investigate the dispersion relation for accretion disks with retarded or advanced heating. We follow the alpha-prescription but allow for a time offset (\tau) between heating and pressure perturbations, as well as for a diminished response of heating to pressure variations. We study in detail solutions of the dispersion relation for disks with radiation-pressure fraction 1 - \beta . For \tau <0 (delayed heating) the number and sign of real solutions for the growth rate depend on the values of the time lag and the ratio of heating response to pressure perturbations, \xi . If the delay is larger than a critical value (e.g., if \Omega \tau <-125 for \alpha =0.1, \beta =0 and \xi =1) two real solutions exist, which are both negative. These results imply that retarded heating may stabilize radiation-pressure dominated accretion disks.Comment: 11 pages, 10 figures, to be submitted to A&

    Solutions of the Faddeev-Yakubovsky equations for the four nucleons scattering states

    Full text link
    The Faddeev-Yakubowsky equations in configuration space have been solved for the four nucleon system. The results with an S-wave interaction model in the isospin approximation are presented. They concern the bound and scattering states below the first three-body threshold. The elastic phase-shifts for the N+NNN reaction in different (S,TS,T) channels are given and the corresponding low energy expansions are discussed. Particular attention is payed to the n+t elastic cross section. Its resonant structure is well described in terms of a simple NN interaction. First results concerning the S-matrix for the coupled N+NNN-NN+NN channels and the strong deuteron-deuteron scattering length are obtained.Comment: latex.tar.gz, 36 pages, 10 figures, 11 tables. To be published in Physical Review

    Fractional Laplacian in Bounded Domains

    Full text link
    The fractional Laplacian operator, ()α2-(-\triangle)^{\frac{\alpha}{2}}, appears in a wide class of physical systems, including L\'evy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely hopping particles and elastic springs. The eigenvalues and eigenfunctions in a bounded domain are then obtained numerically for different boundary conditions. Some analytical results concerning the structure of the eigenvalues spectrum are also obtained.Comment: 11 pages, 11 figure

    The Price of WMAP Inflation in Supergravity

    Get PDF
    The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.Comment: 15 pages, 6 figures, plain Late
    corecore