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ABSTRACT 

When a west-east line of deep convection forms over northern Australia, the 
potential vorticity field beg·ns to change due to the latent heat release, with low 
level negative and upper level positive anomalies being induced. These potential 
vorticity patterns can be a alytically derived by using a zonal balance model for-
mulated in isentropic and potential latitude coordinates. The associated wind and 
mass fields can be found by solving an invertibility principle which is valid for these 
equatorial balanced flows. Since the convectively induced potential vorticity anoma-
lies develop from an initial state which has potential vorticity increasing toward the 
north , reversed poleward gradients of potential vorticity are produced. The regions 
of potential vorticity gradient reversal are found on the poleward side of the ITCZ 
at low levels and on the equatorward side of the ITCZ at upper levels, just as in 
the observed fields during AMEX. For typical convective heating rates, significant 
potential vorticity gradient reversals occur quickly- on the order of a few days. 
This sets the stage for combined barotropic-baroclinic instability, the formation of 
tropical waves , and t he breakdown of the ITCZ. We can understand the barotropic 
aspects of this breakdown t rough a normal mode stability analysi~. f the nondiver-
gent barotropic model with either a hyperbolic tangent shear layer basic state zonal 
wind or an idealized three region profile in which there is a central (ITCZ) region of 
anomalous absolute vorticity, surrounded by regions of undisturbed absolute vortic-
ity. The latter model can be solved analytically, which allows direct interpretation 
of the breakdown in terms of the phase locking and growth of the counterpropa-
gating vorticity anomalies (essentially Rossby waves) located on the two interfaces 
separating the three regio s. In this sense the ITCZ is self-destructive and should 
not be viewed as a strictly steady state feature of the tropical circulation. In addi-
tion , according to this scenario, the potential vorticity dynamics of the Australian 
region are not unique, but are characterized by an ITCZ formation-breakdown cycle 
similar to that occuring in other tropical regions such as the tropical east Pacific 
and western Africa. 
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1. Introduction 

The purpose of the present paper is to show how the monsoon trough over 
northern Australia and its associated zonal circulation can be produced in just a 
few days by latent heat release in an elongated east-west line of ITCZ convection and 
then to examine how this zonal flow can become barotropically unstable. We shall 
model the basic potential vorticity (PV) dynamics of this process with a zonally 
symmetric, inviscid, balanced theory (section 3) , and compare the model results 
with observed zonal wind and PV cross-sections (section 2) from the Australian 
Monsoon Experiment (AMEX). The zonal flows produced by this idealized Hadley 
cell model can then be analyzed for stability using linear and nonlinear stability 
theorems and normal mode methods (sections 4 and 5) . This allows fluctuations 
in the monsoon trough to be interpreted in terms of dynamic instability associated 
with a reversal of the normal poleward gradient of potential vorticity on isentropic 
surfaces. 

2. AMEX cross-sections of zonal wind and potential vorticity 

General discussions of the climatology and interannual variability of the Aus-
tralian summer monsoon can be found in Holland (1986) , McBride (1987) and 
Hendon and Liebmann (1990). The particular sequence of weather events which 
occurred during the second phase of AMEX (10 J anuary to 15 February 1987) has 
been described in detail by McBride and Holland (1989) , Gunn et al. (1989), Hendon 
et al. (1989) , Davidson et al. (1990), Webster and Houze (1991) , and Mapes and 
Houze (1992) . The average low-level flow during this period was characterized by a 
monsoon trough or shear line near 15 S, with westerlies to the north and easterlies 
to the south. After the monsoon westerlies had been established on 14 January, 
they were maintained throughout the AMEX period except for two break periods. 
Here we shall contrast the inactive monsoon period 25- 29 January and the active 
period 30 January to 4 February. Meridional cross-sections of zonal wind for these 
two periods are presented in the bottom panels of Figs. 1 and 2. The winds shown 
here represent an average over the sector 110- 135 E, which during the active period 
contained intense convection between 10 and 15 S. According to McBride et al. 
(1989) and Frank and McBride (1989) , the midtropospheric peaks of apparent heat 
source in the Gulf of Carpentaria were approximately 23 K day- 1 during the active 
period and approximately zero during the inactive period. Before examining the 
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PV cross-sections shown in the top panels of Figs. 1 and 2, let us briefly discuss the 
concept of Rossby-Ertel potential vorticity and its equivalent definitions in isobaric 
and isentropic coordinates. 

The Rossby-Ertel potential vorticity can be calculated from observed pressure, 
temperature and winds using the quasi-static, isobaric coordinate form 

p _ ao { 8v ( 80 ) _ 8u (!!_) 
- 8p a cos </>8>. P 8p a8</> P 

-[2nsin</>+ ( 8v ) - (8(ucos</>)) l 80}, (2.l) 
a cos </>8>. P a cos </>8</> P 8p 

or the isentropic coordinate form 

p = ao [2nsin </> + ( 8v ) _ (8(ucos</>)) ] , 
a a cos ¢8>. 9 a cos </>8</> 9 

(2.2) 

where a = -8p/80 is the isentropic pseudodensity and a0 is a constant reference 
value of a. The forms (2.1) and (2.2) are equivalent , and it is a simple matter to 
transform from one to the other ( e.g., the single term involving v in (2.2) transforms 
into the two terms involving v in (2.1 ), with the term involving ( 80 / 8>.)p accounting 
for the fact that 0-surfaces and p-surfaces may not be parallel). Because the sum 
of terms in the square brackets of (2.1) is different than the sum of terms in the 
square brackets of (2.2) , we shall use different terminology in reference to them, i.e. , 
isobaric absolute vorticity for the sum of terms in the square brackets of (2.1) and 
isentropic absolute vorticity for the sum of terms in the square brackets of (2.2). 
However, since the total right hand side of (2.1) is equivalent to the total right hand 
side of (2.2) , we shall refer to either of them as simply PV.t 

For the sake of convenience, we shall use formula (2.1) when computing PV 
from the AMEX data and formula (2.2) in the theoretical analysis of section 3, but 
it should be noted that we are talking about the same physical quantity. In either 
case, equations (2.1) and (2.2) reflect our belief that potential vorticity is easier 

t Because the adjective 'isentropic' is not a useful modifier of the noun 'potential 
vorticity', we shall avoid use of the term 'isentropic potential vorticity'. However, 
we note that the term 'isentropic potential vorticity map' (IPV map) is useful if the 
adjective 'isentropic' is taken to modify map rather than potential vorticity, i.e. , if 
we interpret 'IPV map ' as short for 'PV map on an isentropic surface. ' 
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Figure 1. T he top panel shows isolines of the dimensionless potential vorticity 
P/'20) averaged over an area (110-135 E) and period (25-29 January 
1987) of inactive monsoon during AMEX. The stippling indicates regions 
where the poleward isentropic gradient of potential vorticity is reversed . 
The bottom panel shows the zonal winds associated with the potential 
vorticity field. Solid lines indicate westerly flow and dashed lines easterly 
flow , with a contour interval of 2 ms- 1 . 
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Figure 2. The top panel shows isolines of the dimensionless potential vorticity 
P/(20) averaged over an area (110- 135 E) and period (30 January to 4 
February 1987) of intense convection during AMEX. The stippling indi-
cates regions where the poleward isentropic gradient of potential vorticity 
is reversed. The bottom panel shows the zonal winds associated with the 
potential vorticity field. Solid lines indicate westerly flow and dashed 
lines easterly flow, with a contour interval of 2 ms-1 . 
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to interpret if we define it in such a way that it has the same units as vorticity. 
Thus, the introduction of the reference value a0 in (2.1) and (2.2) is analogous to 
the introduction of a reference pressure in the definition of potential temperature in 
order that it have the same units as temperature. For the observational and model 
results presented here we have chosen a0 = 1458 Pa K-1 . According to (2.2) t he 
potential vorticity of an air parcel is equal to the isentropic absolute vorticity the 
air parcel would acquire under an adiabatic rearrangment which changed its actual 
pseudodensity a to the constant reference value a0 • With the definitions (2.1) and 
(2.2) it is natural to plot diagrams of the dimensionless quantity P/(20.) . This 
partly overcomes the difficulty in interpretation caused by the rather obscure units 
associated with the usual definitions of potential vorticity. 

The potential vorticity fields for the inactive and active periods are shown 
in Figs. 1 and 2. The main feature of interest is the large negative PV anomaly 
centered near 16 Sand 325 K (550 mb) in the active period. The necessary condition 
for combined barotropic-baroclinic instability is met because south of this anomaly 
there is a large reversal in the PV gradient. During the active period the magnitude 
of this gradient is approximately five times larger t han its value during the break 
period. A second area of PV gradient reversal is present equatorward of the ITCZ 
and at upper levels. These regions of reversed isentropic poleward gradient of PV 
are indicated by stippling in Figs. 1 and 2. Also present in this figure are regions 
where the necessary condition for inertial instability (f P < 0) is met. The first area 
where this condition is met lies between the equator and 5 S where air parcels from 
the northern hemisphere (with P > 0) have moved into the southern hemisphere. 
The second area lies on the anticyclonic side of the subtropical jet (i.e., poleward 
of 22 S and above 340 K). Whereas this latter area of instability does not appear 
in the mean PV field computed over the entire phase II AMEX period, the other 
areas mentioned here are present in the 37-day averaged field. In the next section 
we shall see to what extent these observed features can be reproduced by a zonally 
symmetric, inviscid , balanced model of the Hadley circulation. 

3. Zonally symmetric balanced model 

Using the potential temperature 0 as the vertical coordinate, the equations for 
thermally forced , inviscid , zonally symmetric, balanced flow can be written 

Du ( 2n . </> u tan</> ) 0 -- lG Slll +--- V= Dt a ' 
(3.1) 

7 



where 
D & & . & 
Dt = &t + v a&<j) + 8 &0 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

is the total derivative, u and v the zonal and meridional components of the wind, 
II = cp(p/p0 )"' the Exner function, M = 0II + gz the Montgomery potential, CJ = 
-&p/&0 the pseudodensity in 0-space, and 0 = D0/Dt the effect of heating. Using 
the definitions of II and CJ, the set (3.1)- (3.4) can be considered closed in the 
unknowns u, v, p and .!vf. However, it is not a convenient set for prediction since (3.1) 
and (3.4) cannot be used as independent predictors. In particular, the prediction 
of u by (3.1) and the prediction of p by (3.4) must be consistent with a continuous 
state of zonal wind and hydrostatic balance, as required by (3.2) and (3.3). This 
implies that only one dependent variable should be predicted. One possible choice 
for the predictive variable is the potential vorticity. The potential vorticity principle 
associated with the balanced set (3.1)- (3.4) can be derived by firs_t. noting that the 
equation for the isentropic absolute vorticity takes the form 

D( +(&(vcos <j) ) _ &u &0 _ 0 Dt a cos <j)&<j) &0 a&<j) - ' (3.6) 

where ( = 20 sin ¢ - &( u cos <P) / ( a cos <j)&<j)) is the zonally symmetric form of the 
isentropic absolute vorticity. Eliminating the isentropic divergence between (3.4) 
and (3.6) we obtain 

CJ DP &u &0 &0 
CJo Dt = &0 a&</> + ( &0 ' (3.7) 

where P = (CJo/CJ)( is the potential vorticity [the zonally symmetric form of (2.2)]. 
This form of the potential vorticity equation will prove useful after we make a 
coordinate transformation which will simplify the total derivative operator. 

The zonal momentum equation (3.1) can also be written in the absolute angular 
momentum form D(Oa cos2 </> + u cos</>)/ Dt = 0. Since absolute angular momentum 
is conserved, one might expect certain advantages in using it as a coordinate in place 
of ¢. We follow this general approach but , in particular, use as a new coordinate 
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the potential latitude <I> (Hack et al. 1989, Schubert et al. 1991) , which is related to 
the actual latitude </> and the zonal wind u by na cos2 <I> = na cos2 </> + u cos</>. This 
relation allows the potential latitude to be interpreted as the latitude to which an 
air parcel must be moved (conserving absolute angular momentum) in order for its 
zonal wind component to vanish. Let us now consider (<I>, 0, T) space, where 0 = 0 
and T = t. The symbols 0 and T are introduced to distinguish partial derivatives 
at fixed </> (8/80 and 8/8t) from partial derivatives at fixed <I> (8/80 and 8/87'). 
We can now easily show that (3.5) can also be written as 

D 8 . 8 
Dt = 8T + 0 30· (3.8) 

The advantage of (3.8) over (3.5) is the elimination of the divergent wind component 
v, which is now implicit in the coordinate transformation. 

Let us now introduce the potential pseudodensity a• = (20 sin <I>/ ()a. The 
potential pseudodensity is related to the potential vorticity by a• P = a020 sin <I> 
and is simply the pseudodensity a parcel would acquire if ( were changed to 20 sin <I> 
under conservation of P. Since a• is proportional to p- 1 , the potential pseudo-
density equation can be easily obtained from the potential vorticity equation (3. 7) . 
To begin we note that (8u/80)(8/a8¢>) + ((8/80) = ((8/80), which allows us to 
rewrite the right hand side of (3.8). Then, with D / Dt given by (3.8), the potential 
pseudodensity equation becomes 

8a* 8(a*0) 
8T + 80 = 0· (3.9) 

In the absence of heating, a* is invariant. The advantage of (3.9) is that , if the 
source term 0 is a known function of (<I>, 0 , T) , then the problem of solving for the 
time evolution of a* has separated from the rest of the dynamics. If 0 is simple 
enough, (3.9) can even be solved analytically. 

To solve (3.9) analytically let us consider the simple case in which 0 is inde-
pendent of time and is given by 

where 

. { o if >.z 2: 1r 9( S, Z) = Q( S) sin2 ( >.Z) if >.Z < 1r (3.10a) 

Q(S) = Qo4ari-½ { erf[a(l+Sc)] +erf[a(l-Sc) }-l exp [-a2(S - Sc)2), (3.10b) 
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S = sin4> and Z = (0-0B}/(0T-0B)- By varying the parameters .X , Sc and 
a we can consider simulated ITCZ's with heating patterns centered at different 
heights and latitudes and with different extents in the vertical and horizontal. By 
integration of (3.10b} from the south pole to the north pole we can show that 
½ J Q(S} dS = Q0 , so that different values of Sc and a all result in the same area 
averaged heating Q0 . For the results shown here we have chosen a= 7.5 and either 
Sc = sin(-10°} -0.174 or Sc = sin(-15°} -0.259. These can be interpreted 
as rather broad ITCZ's with approximately 85% of their rainfall occurring within a 
fifteen degree latitude band centered on 10 Sor 15 S. From (3.10} and the predictive 
equation (3.9} we find that 

if .xz 1r, (3.lla} 

if .xz < 1r, (3.llb} 

where T(S) = Q(S)T /(0T - 0 B) is the dimensionless "convective clock" time. 
According to ( 3.11 b) the quantity Ba* is constant along each characteristic curve 
determined from dZ/ sin2 (.XZ) = dT. By integration of this equation we can show 
that the characteristic through the point ( Z, T) intersects the T = 0 axis at a level 
Zo ( Z , T) determined by 

.xz = { .xz if .xz 7f , 
0 cot-1 [cot(.XZ) + AT] if .XZ < 1r. 

(3.12) 

Since Ba* is constant along each characteristic, its value at ( Z, T) must equal its 
value at (Z0(Z, T), 0) , which results in 

(3.13} 

The analytic solution (3.13) constitutes an internal potential pseudodensity anomaly, 
i.e. , a a• field which is modified at 0 < .XZ < 1r. For the results presented here we 
have specified 0T = 360 K, 0B = 300 Kand .X = l.l1r, which places the top of the 
heating at ~ 150mb. Because of the way the product Q(S)T appears in (3.llb) it 
is not really necessary to choose Q0 ; rather, the solution can simply be obtained 
for different values of Q0T. However, for purposes of physical interpretation let us 
choose Qo = 1.5 K day- 1 . Then, the peak heating is Q(Sc) 12.5 K day-1 and 
T = 2 days corresponds to Q0T = 3.0 K. For the results presented here we have 



specified an initial a* which depends on 0 but not on ¢>. This represents an initial 
state with no zonal flow and with a mean tropical temperature profile. The mean 
tropical temperature profile is taken from the sector average temperature at 12.5S 
for the disturbed AMEX period presented in Fig. 2. 

Now that a* has been determined analytically, our final theoretical task is 
to determine both the wind and mass fields from the a* field. This task can be 
accomplished because the definition of a*, along with the gradient and hydrostatic 
constraints, lead to a coupled pair of equations which relate the known a* field 
to the unknown M = M + ½u2 and sin</> fields. We shall refer to this pair of 
equations and its associated boundary conditions as the invertibility principle. To 
derive the invertibility principle we use the definition of a* to obtain the Jacobian 
form 8(s,p)/8(S, 0) + a* = 0, wheres= sin¢. Using the transformed hydrostatic 
equation 8M/80 II we can write this Jacobian form and the zonal balance 
condition as 

8s 82 M _ 8s 82 M r * _ O 
8S 802 80 8S80 + a -

2n2 2 S ( s2 - 52) 8M = 0 
a l - s2 + 8S ' 

(3.14a) 

(3.14b) 

where r = "'II /p. Equations (3.14a- b) constitute the desired relation between M , 
s and a*. For boundary conditions we choose 

8M 
80 = ITT at 0 = 0T, 

8M n2a2 (s2 - s2)2 
0 80 - M + 2(1 _ s2 ) = 0 at 0 = 0 B , 

s = l at S = 1, 

s = - l at S = -1. 

(3.14c) 

(3.14d) 

(3.14e) 

(3.14f) 

Equation (3.14c) results from assuming that the upper isentropic surface 0 = 0T 
is also an isobaric surface with Exner function ITT. The lower boundary condition 
results from assuming the geopotential vanishes on the lower isentropic surface 
0 = 0 B , so that M = 0II there. Then, expressing Min terms of M ands, we can 
write the lower boundary condition as (3.14d). For the boundary conditions at the 
poles, symmetry requires the conditions (3.14e,f). 

We can now summarize the results of our analysis as follows. Since the time 
evolution of the a* field is determined from (3.13), we can then solve the diagnostic 
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problem (3.14) for M and s, after which u, II and p are easily determined. This is 
all accomplished in (S, 0) space. The transformation to other representations, e.g. 
u( </>, 0) or u( </>, p), is straightforward. 

For the case of an ITCZ at 15 S the fields of a., P and u at 2 days are shown 
in Fig. 3. In the ITCZ a region of negative potential vorticity develops at low and 
mid-levels. The solution of the invertibility principle results in low level zonal flows 
which are easterly except in a band which runs between a latitude just south of 
the equator and a latitude near the center of the ITCZ. At upper levels the zonal 
flow is westerly except in a band which runs between a latitude just north of the 
equator and a latitude near the center of the ITCZ. These modeled winds contain 
all the major features of the observed zonal winds shown in Fig. 2, except for the 
subtropical jet whose origin is beyond the model's physics. 

The conve,::tive modification of the P field occurs within a background state 
which has a northward increase of P. As convection continues the gradient of P 
becomes locally reversed in the lower troposphere poleward of the ITCZ and in 
the upper troposphere equatorward of the ITCZ. These regions of reversed isen-
tropic poleward gradient of potential vorticity are indicated by stippling in Fig. 3. 
Such features c.evelop quickly and are consistent with observations made by Burpee 
(1972) and Rred et al. (1977) in their studies of the origins of easterly waves in 
the lower troposphere of the north African region. According to Charney and Stern 
(1962) and Eliassen (1983), such zonal flows (i.e., those with a reversal in the merid-
ional gradient of the potential vorticity) satisfy the necessary condition for combined 
barotropic-baroclinic instability. Thus, it would appear that ITCZ convection alone 
can lead to the generation of unstable zonal flows. This may be the cause of peri-
odic breakdowns of the ITCZ. The precise role of the upper level potential vorticity 
gradient revenal remains intriguing. 

Results aJ; 2 days for an ITCZ located at 10 S are shown in Fig. 4. Compar-
ing Fig. 4 with Fig. 3 we note that , except for the latitudinal shift , the a• fields 
are essentially identical. However, the potential vorticity, zonal wind and mass 
fields are different , with the ITCZ at 15 S producing a potential vorticity anomaly, 
neighboring zonal winds and isobaric surface deviations noticeably larger than those 
produced by the ITCZ at 10 S. These differences can be interpreted as follows. Since 
Da* /Dt = -a-*80/80 and the initial a• is independent of latitude, the time evo-
lution of a• for ITCZ's at different latitudes is essentially identical except for the 
meridional shift. Since DP/Dt = P80/80 and the initial magnitude of Pis larger 
at 15 S, the material rate of change of P is also larger for an ITCZ at this latitude. 
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Figure 3. Model results at T = 2 days for an ITCZ located at 15 S. The top panel 
shows i olines of <J* /<Jo (i.e. , potential pseudodensity measured in units 
of a0 ) in ( ¢, 0) space. Note that the convection of the ITCZ generates 
a lower tropospheric region of low potential pseudodensity and an upper 
tropospheric region of high potential pseudodensity. The middle panel 
shows isolines of P /(2fJ) (i.e., potential vorticity measured in units of 2fJ). 
The stippling indicates regions where the poleward isentropic gradient of 
potential vorticity is reversed. The bottom panel shows pressure (nearly 
horizontal lines) in kPa and zonal balanced wind in ms-1. Solid wind 
contours indicate westerly flow, dashed contours easterly flow, with a 
contour interval of 2 ms- 1. These wind and mass fields are in ( ¢, 0) 
space and are associated with the potential pseudodensity and potential 
vorticity fields shown in the upper two panels. 
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An alternate interpretation is .that , since P = (ao/a*)2!1sin <I>, shifted but otherwise 
identical a* anomalies result in P anomalies which are approximately 50% larger 
for the ITCZ at 15 S. 

4. Nondivergent barotropic instability of the monsoon trough shear zone 

The potential vorticity gradient reversal at lower tropospheric levels on the 
poleward side of the ITCZ sets the stage for combined barotropic-baroclinic insta-
bility. Since the potential vorticity field near the ITCZ is induced by moist physical 
processes, we would expect these same moist processes, along with barotropic and 
baroclinic instability effects, to play a role in the evolution of wave disturbances 
developing out of this background state. Apparently, barotropic processes play a 
particularly important role. To isolate these processes, we shall first consider the 
nondivergent barotropic model. In the following two subsections we consider both 
the linear and nonlinear stability conditions. 

a. sufficient condition for linear stability 

Let us first consider the nondivergent barotropic vorticity equation linearized 
about a basic state zonal fl.ow i1 which varies with latitude. This equation takes the 
form 

where 

8(' _ 8(' , d( 
8t + u acos¢>8>.. + v ad</>= o, 

1 zn . ,1.. 8( i1 cos</>) ':, = H Sl n 'f' - , 
a cos ¢8¢ 

(' = 8v' 
a cos ¢8>.. 

8( u' cos</>) 
a COS ¢8¢ l 

( 4.1) 

(4.2a, b) 

and the perturbation wind components ( u', v') satisfy the nondivergent relation 

8u' + 8(v' cos¢) = 0. 
a cos ¢8>.. a cos ¢8¢ 

( 4.3) 

Defining V /Vt as the derivative following the basic state zonal fl.ow , the first two 
terms in (4.1) can be written V(' /Dt. Defining the meridional particle displacement 
7J by VrJ /Vt = v', we can integrate ( 4.1) to obtain 

d( (' + - d 7JCOS </> = 0, a µ 
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where µ=sin .p. Multiplying ( 4.4) by v' cos <p we obtain 

'DA . .I I <p - = -vr cos Vt ., ' 

- - -1 

where A = ½112 cos
2 

¢ = (a~~) ½('
2 (4.5a, b) 

is the wave-activity. Using ( 4.2b) and the condition of nondivergence in the right 
hand side of ( 4.5a) , we can rearrange the wave-activity equation into the form 

8A + 8 [uA + ½(v'2 
- u'2 ) cos.¢) + 8 [-u'v' cos2 ¢) = O. (4_6) 

8t a cos¢&>. a cos ¢8¢ 

Finally, integ:-ation of ( 4.6) over the sphere yields 

(4.7) 

Since the integral in ( 4. 7) must be constant in time, ( 4.5b) shows that if ( is a 
monotonically increasing function of µ , neither 772 nor ('2 can grow in an overall 
sense. Thus, a necessary condition for instability is that d( / dµ have both signs. For 
the AMEX observations shown in Fig. 2 and for the model results shown in Figs. 
3 and 4 this condition is met because of the reversal of the poleward gradient of 
potential vo:-ticity (and hence also isentropic absolute vorticity) on the south side 
of the ITCZ. 

The sirr ple linear barotropic argument given above can be generalized in several 
ways. Barocliuic effects can be included in both the quasigeostrophic (Charney and 
Stern 1962) and semigeostrophic (Eliassen 1983, Magnusdottir and Schubert 1990, 
1991) frameworks. In addition the analysis need not be limited to parallel shear 
flows (Andrews 1983) or even to linearized dynamics (Arnol'd 1965, 1966; Drazin 
and Reid 1981; McIntyre and Shepherd 1987; Shepherd 1988a,b, 1989, 1990). It is 
the nonlinear extension which we shall now consider. 

b. sufficient condition for nonlinear stability 

In order to generalize the linear arguments of the previous subsection, we now 
begin with the nonlinear barotropic vorticity equation 

where 

D( = &( + u &( + v &( = 0 
Dt &t a cos¢&>. a&¢ ' 
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a cos¢&¢ 

( 4.8) 

( 4.9) 



is the absolute vorticity and the nondivergent wind components ( u, v) satisfy the 
continuity equation 

au + 8(vcos¢>) = 0. 
a cos ¢>8>. a cos ¢>8¢> (4.10) 

We now divide the fields into basic state parts and parts associated with waves or 
eddies, e.g., ((.,\ , µ, t) = ((µ) + ('(>., µ, t), where () denotes the basic state part and 
( )' the departure from the basic state. No linearization will be performed so that 
the primed variables are not necessarily small amplitude. The >.-invariant basic 
state flow is assumed to be a steady solution of (4.8). We consider the case in which 
((µ) is a monotonically increasing function of µ, and thereby define the inverse 
function µ( () such that µ( ( (µ)) = µ. Then, differentiating this last expression with 
respect to µ, we obtain il((µ = 1. 

As the nonlinear generalization of the small amplitude wave-activity ( 4.5b), we 
now follow McIntyre and Shepherd (1987) , Shepherd (1988a) and Haynes (1988) to 
define 

( 4.11) 

If we approximate µ,( ( + () in ( 4.11) by the first two terms in a Taylor series 
expansion about (, it is easily shown that (4.11) reduces to (4.5b). To derive the 
equation obeyed by A((, (') we first take the total derivative of this finite amplitude 
wave activity to obtain 

DA 8A D(, &AD(' 
Dt = 8(, Dt + 8(' Dt ' 

where, from ( 4.11), 

8A [ - , - - ') 8(, =aµ,((+()-µ,(()-µ,((()( ' 

:i =a[µ((,+(') - µ,(()] . 

Equations ( 4.13) and ( 4.14), together with the fact that -D(' / Dt 
v'&(,/a8¢>, allow (4.12) to be written as 

DA I I Dt = -v ( cos</>, 

( 4.12) 

( 4.13) 

(4.14) 

D(,/Dt = 

(4.15) 

which is a nonlinear generalization of ( 4.5a). Using the nondivergence condition 
( 4.10) , we can rewrite ( 4.15) in the flux form 

8A & [u A + ½(v'2 - u'2 ) cos</>] 8 [(vA - u'v' cos¢>) cos¢>] - - -------- + ---------' = 0. &t a cos ¢>8 >. a cos ¢>&¢> (4.16) 
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Equation ( 4.16) is the finite amplitude wave-activity relation and is a generalization 
of the small amplitude relation ( 4.6). Several differences are noteworthy. All the 
primed quantities in ( 4.6) are small amplitude, whereas the primed quantities in 
( 4.16) may be of finite amplitude. Where the flux ( uA, vA) appears in the finite 
amplitude relation (4.16) , the flux (uA ,O) appears in the small amplitude relation 
(4.6). Finally, the finite amplitude wave-activity is defined by (4.11), whereas the 
small amplitude wave-activity is defined by ( 4.5b ). 

To obtain the nonlinear stability condition we now integrate (4.16) over the 
surface of the sphere to obtain 

:t ff Ad>.dµ = 0. (4.17) 

Although this looks identical to ( 4. 7) , we must keep in mind that the A in ( 4.17) 
is defined by (4.11) while the A in (4.7) is defined by (4.5b) . The results are 
consistent since (4.11) reduces to (4.5b) in the small amplitude limit. From the 
definition ( 4.11) , we now note that 

Together , ( 4.17) and ( 4.18) imply that 

l(µ~max ff ('2 (>,, µ,t)d>.dµ::; ff A((,(' , t)d>.dµ 

=ff A((,(' ,O)d>.dµ::; l(µ~min ff ('2(>. ,µ,0)d>.dµ, 

which can also be written 

( 4.19) 

This is the form of Arnol'd 's (1965, 1966) result derived by McIntyre and Shepherd 
(1987) and used by Shepherd (1988a) to obtain rigorous bounds on the nonlinear 
saturation of barotropic instabilities to parallel shear flows. The inequality (4.19) 
bounds the disturbance enstrophy at time t in terms of the initial disturbance 
enstrophy and t he poleward gradient of the basic state absolute vorticity. It rules 
out the possibility of instability for basic state flows with (µ > 0 everywhere. 
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c. jets and shear layers 

To actually confirm that a zonal flow is unstable and to find the growth rates 
and modes of breakdown of the flow, an eigenvalue-eigenfunction calculation is 
useful. At this point we introduce the /3-plane approximation so that (4.1) simplifies 
to 

( a _ a ) 2 &'I/J d( 
&t + u &x v1 1P + &x dy = O, (4.20) 

where ((y) = fo+/3y-uy and 'lj; is the streamfunction for the perturbation horizontal 
velocity component u' = -&'lj;/&y and v' = &'ljJ/&x, in which case the perturbation 
vorticity is v72 '1j;. We shall search for solutions of (4.20) having the form 'I/J(x, y, t) = 
w(y)eik(x -ct) where k is the zonal wavenumber and c can be complex. Equation 
(4.20) then becomes 

d2w + (/3 - uyy - k2) w = 0. 
dy 2 U - C 

(4.21) 

In discussions of barotropically unstable solutions of ( 4.21) it is common to 
consider two idealized types of basic flows-jets and shear layers. There are many 
studies of th ., generation of easterly waves from zonal jets ( e.g., Nitta and Yanai 
1969, Yamasaki and Wada 1972, Rennick 1976, Simmons 1977, Mass 1979, Williams 
et al. 1984, Peng and Williams 1986). One of the most extensively studied jets is 
the Bickley jet, for which 

((y) =Jo+ /3y + (2U/yo)sech2(y/yo) tanh(y/yo) , 

so that the poleward gradient of absolute vorticity is 

(y = /3 - Uyy = /3 {1 + (2/b)sech2 (y/yo) [1 - 3tanh2(y/yo)]} , 

where U and y are specified constants and b = /3y5/U. Profiles of u, ( and (y 
for both the westerly and easterly Bickley jets are shown in Fig. 5. One further 
differentiation of (y leads to the result that (y reaches its extrema at tanh(y /y0 ) = 
±./213 and y = 0. Requiring (y < 0 at the minima leads to the necessary condition 
-2 < b < 2/3 for instability of the Bickley jet. Thus, we should expect more 
unstable states as y0 decreases and IUI increases. The necessary condition for 
the Bickley jet also suggests a difference between easterly (b < 0) and westerly 
(b > 0) jets, and detailed eigenvalue calculations (Kuo 1973, Fig. 7, or Haltiner and 
Williams 1980, Fig. 4.3) do indeed show that easterly Bickley jets are more unstable 
than corresponding westerly Bickley jets. Thus, if the easterly jet poleward of the 
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ITCZ and the westerly jet equatorward of the ITCZ are of equal strengths and 
equal widths, the easterly jet should be expected to be more dynamically active. 
An important argument against the use of the Bickley jet as an idealization of 
the easterly jet produced by the Hadley circulation is the position of the region 
of reversed absolute vorticity gradient. For the easterly Bickley jet this region is 
in the center of the jet (Fig. 5) while for monsoon type flows produced by ITCZ 
convection it lies equatorward of the easterly jet (Fig. 4). In this sense, idealized 
shear layer profiles may be more germane. 

A useful idealization of the lower tropospheric monsoon trough shear zone of 
Figs. 3 and 4 is the hyperbolic tangent basic state, for which 

u(y) = Utanh(y/yo), 

so that the poleward gradient of absolute vorticity is 

(y = (3 - ilyy = (3 [1 + (2/b)sech2 (y/yo) tanh(y/yo)], 

where again U and Yo are specified constants and b = (3y5f U. Profiles of u , ( 
and (y for this shear layer are shown in Fig. 6. One further differentiation of (y 
leads to the result that (y reaches its extreme values where tanh(y /y0 ) = ±yTT3. 
At the extremum on the poleward (south) side of the ITCZ we have (3 - ilyy = 
(3 [1 - 4/ (3\1'3b)]. Thus, (3 - ilyy has both signs and the necess·.£ condition for 
instability is satisfied if Jbl < 4/(3\1'3) 0.77. Again, we should expect more 
unstable states as Yo decreases and JUI increases. Note that ITCZ convection tends 
to push the atmosphere into a barotropically unstable state by decreasing b both 
through an increase in U and a decrease in y0 ( nonlinear collapse). 

When the hyperbolic tangent wind field is used in ( 4.21) we obtain 

d2
'1t = [(k )2 _ b + sech

2y tanh yl '1t 
dy2 Yo tanh y - c/U ' ( 4.22) 

where y = y/yo. With appropriate boundary conditions and for given ky0 and 
b, this is an eigenvalue-eigenfunction problem for the complex eigez:ivalue c/U and 
the eigenfunction '1t. Unfortunately, this problem cannot be solved analytically. 
Numerical solutions have been obtained for the nonrotating case by Michalke (1964) 
and for the rotating case by Lipps (1970) , Williams et al. (1971), Dickinson and 
Clare (1973) and Kuo (1973). Kuo's results for the dimensionless growth rate 
kci/(f3yo) as a function of kyo and bare shown in Fig. 7. Note that the growth rate 
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Figure 5. Top panels show profiles of u, ( and Jo (dashed), and (y for the westerly 
Bickley jet. Bottom panels show the same fields for the easterly Bickley 
jet. Note that the regions of reversed vorticity gradient are on the sides 
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Figure 7. Reinterpretation of Kuo's (1973) growth rate diagram for the hyper-
bolic tangent shear layer. Isolines represent dimensionless growth rate 
kci/( f3Yo) as a function of b = /3y5/U and the dimensionless wavenum-
ber kyo. To aid in physical interpretation we have labeled the isolines in 
terms of thee-folding time in days, the ordinate in terms of U (ms-1 on 
the right) and the abscissa in terms of zonal wavelength (km on the top) , 
all for the choices /3 = 2.235 x 10- 11 m-1s-1 and y0 = 500 km. 
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increases from zero at b 0. 77 to a maximum at b = 0 and that the most unstable 
wavelength increases as the shear increases (b decreases) , which is also the case for 
the Bickley jet. Most of the physics contained in the shear layer model can be more 
simply illustrated in the three region model described in the next subsection. 

In passing we note that the hyperbolic tangent shear layer is also relevant to 
the understanding of westward moving undulations in the sea-surface temperature 
front which occurs near 3 N between the warm, eastward moving north equatorial 
countercurrent and the cold, westward moving south equatorial current. Observa-
tional analysis of this phenomenon has been made by Legeckis and his collaborators 
{1977, 1983, 1986) while a barotropic instability analysis has bee~ given by Philan-
der (1978, 1990). 

d. three region model 

Following the classical approach described by Rayleigh (1945, pages 392- 394) , 
Gill (1982, section 13.6) , Haurwitz (1949) and Lipps (1970), let us consider a three 
region model in which the basic state zonal flow has the form 

Yo :'.SY< oo 
-yo :'.SY :'.S Yo 

-oo < y :'.S -yo 
( 4.23) 

where U and y0 are specified constants. This is essentially a shear layer flow with 
u = U at y = Yo and u = -U at y = -yo. By differentiation of ( 4.23) we can easily 
obtain 

_ du { lo + fJYo 
((y)=lo+fJy-d= lo-U/yo 

Y lo - fJYo 

Yo< Y < oo 
-yo< Y < Yo 
-oo < y < -yo 

( 4.24) 

so that the basic state absolute vorticity ( is piecewise constant , as shown by the 
dotted line in Fig. 6. The central region (-yo :'.Sy :'.S Yo) represents an ITCZ which 
lies south of the equator. Large negative absolute vorticity occurs in the ITCZ 
region. At y = y0 there is a concentrated positive gradient of absolute vorticity 
while at y = -yo there is a concentrated reversed gradient of absolute vorticity. 

Except along the lines y = ±y0 , (y = (J - Uyy = 0 so from (4.21) we conclude 
that d2 \JI/ oy2 - k2 \JI = 0. Thus, nonzero perturbation vorticity occurs only along 
y = ±y0 , with the perturbation flow being irrotational elsewhere. As solutions of 
( 4.20) which are bounded as IYI -+ oo, we have 
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where '11., and 'Pn are constants. Note from (4.25) that 'I/; and hence v' = 8'1/;/8x are 
continuous at y = ±y0 . The solution associated with the constant '11., has vorticity 
anomalies concentrated at y = -y0 , so that the corresponding solution for 'I/; decays 
away in both directions from y = -y0 • Similarly, the solution associated with the 
constant '11 n has vorticity anomalies concentrated at y = y0 and the corresponding 
solution for 'I/; decays away from y = YO· Integrating (4.21) over a narrow region 
centered on either y = -yo or y = Yo, we obtain 

(
d'11) -(u-c)~ dy +'11~(=0 at (4.26) 

where stands for the jump across the narrow region. Substituting ( 4.25) into 
( 4.26) we obtain 

where 
U(b + 1) 

Cn = - ' 2kyo 
U(b - 1) 

c., = - ' 2kyo 
b = {Jy5. u 

(4.27) 

(4.28) 

If the basic state vorticity jump at the southern interface were removed, the first 
term in ( 4.27) would disappear and the Ross by wave on the northern interface would 
propagate with phase speed c = U + Cn. Similarly if the basic state vorticity jump 
at the northern interface were removed, the second term in (4.28) would disappear 
and the Rossby wave on the southern interface would propagate with phase speed 
c = -U + c., . For a typical active monsoon situation, U > 0 and 0 < b < l 
so that Cn < 0 and c., > 0, i.e. , the noninteracting Rossby wave on the northern 
interface propagates westward relative to the eastward zonal flow on the normal 
poleward gradient of basic state vorticity, while the noninteracting Rossby wave on 
the southern interface propagates eastward relative to the westward zonal flow on 
the reversed poleward gradient of basic state vorticity. Thus, the system ( 4.27)-
( 4.28) can be regarded as a concise mathematical des·cription of the interaction of 
two counterpropagating Ross by waves. The first term in ( 4.27) gives the effect of 
the southern vorticity anomaly pattern on the behavior of the northern interface, 
while the second term in (4.28) gives the effect of the northern vorticity anomaly 
pattern on the behavior of the southern interface. Note that the effect of these 
interactions decays with increasing wavenumber and increasing shear layer width 
according to e-2kYo. 
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Regarding ( 4.27) and ( 4.28) as a linear homogeneous system in the unknowns 
\Ji' s and \JI' n , we require that the determinant of the coefficients vanish, which yields 
the eigenvalue relation 

kyoc 1 [( 1 )2 1( 2 ) -4k ]½ U = - 2 b ± 2 - kyo + 4 b - 1 e Yo • ( 4.29) 

Thus, if we calculate the complex eigenvalue c from ( 4.29) , use this result in ( 4.27) or 
(4.28) to determine the ratio between Ws and Wn, and then use this ratio in (4.25), 
we will have determined the corresponding eigenfunction 'I/; to within a multiplicative 
constant. From ( 4.29) we note that lbl < 1 is a necessary condition for instability. 
For unstable flow the dimensionless phase speed and growth rate are 

u 
kci 1 [ 1 2 -4k ( 1 ) 2] ½ - = - -(1 - b )e Yo - - - kyo . f3 yo b 4 2 

( 4.30) 

Note that Cr = ½ ( Cn + Cs) , 1.e. , the phase speed of the barotropically unstable 
disturbance is simply the average speed of the noninteracting Rossby waves on the 
two interfaces. 

Isolines of the dimensionless phase speed cr/U and growth rate kci/ (f3y0 ) as 
functions of ky0 and b are displayed for y = 500 km and 300 km in Figs. 8a and 
8b, respectively. As indicated by the star symbol in Fig. 8a, the model parameters 
which best describe the lower tropospheric zonal flow over AME~~ uring the ac-
tive period in Fig. 2 are U = 12 ms- 1 and y0 = 500 km. The arrows in Fig. 8a 
depict how the wind shear across the monsoon trough increases with time for the 
two runs of the zonally symmetric model described in section 3. For example, after 
60 hours of ITCZ co vection the low level wind shear across an ITCZ at 15 S is 
approximately 10 ms- 1 /500 km. At this value of shear, the three region model pre-
dicts the presence of barotropic instability with an e-folding time of approximately 
three days. Furthermore, these arrows suggest that ITCZ's become barot ropically 
unstable sooner as their latitudinal position shifts poleward. Comparison of Fig. 
8a with 8b shows that the most unstable wavelength is a function of the width of 
the shear region such that as Yo decreases the most unstable wavelengths become 
shorter. As in Kuo's results (Fig. 7) , the three region model (Fig. 8)' shows that the 
most unstable wavelength increases as b is decreased. Although Figs. 7 and 8 are 
similar, there are differences for very long waves (small ky0 ). This is due to the lack 
of a background absolute vorticity gradient in the three region model ( compare the 
solid and dotted curves in the middle panel of Fig. 6) . 
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Figure Sa. Isolines of the dimensionless phase speed cr/U (dashed) and growth 

rate kcd(fJyo) (solid) as a function of b = {Jy5/U and the dimensionless 
wavenumber ky0 for the three region model. To aid in physical interpre-
tation we have labeled the isolines of growth rate in terms of thee-folding 
time in days, the ordinate in terms of U (ms-1 on the right) and the ab-
scissa in terms of zonal wavelength (km on the top) , all for the choices 
fJ = 2.235 x 10-11 m- i.s-1 and y0 = 500 km. The arrows depict how the 
wind shear across the monsoon trough increases with time for an ITCZ 
centered at 15 Sand 10 S. The numbers plotted along these arrows denote 
the time (hours) at which the Hadley cell model developed a given wind 
shear. The star labeled AMEX represents the observed value of wind 
shear across the monsoon trough during a period of intense convection 
( taken from Fig. 2). 
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Turning our attention to the eigenfunction, we now note that the first part of 
( 4.25) represents the streamfunction pattern associated with the chain of vorticity 
anomalies along the line y = -y0 , while the second part represents the pattern 
associated with the anomalies along the line y = y0 . In Fig. 9a we have plotted 
the total streamfunction solution determined from ( 4.25) for the most unstable 
wave when b = 0.46. The part of the total solution associated with the constant 
'P n is shown in Fig. 9b, and that associated with the constant 'P., in Fig. 9c. By 
superimposing Figs. 9b and 9c we can see the mutual influence of the two chains 
of vorticity anomalies. To aid in understanding this mutual influence we have 
constructed the schematic shown in Fig. 10. The amplitude of the undulat ions in 
this figure are proportional to the meridional particle displacements which, in turn , 
are proportional to the voriticty jumps ( L\() at the interfaces ( cf. dotted line in 
middle panel of Fig. 6). The other values shown in Fig. 10 were computed from 
( 4.28) and ( 4.29) using the same model parameters as those for Figs. 8a and 9. 

The mechanism of monsoon shear zone breakdown for the most unstable nor-
mal mode can now be summarized as follows (see Fig. 10). The original undisturbed 
state consists of a strip of negative vorticity, with westerlies to the north and east-
erlies to the south. Fluid displaced away from the cent ral strip leads to negative 
vorticity anomalies while fluid displaced toward the strip leads to positive vorticity 
anomalies, as indicated by the open sign symbols on the northern interface and the 
solid sign symbols on the southern interface. The open arrows represent the flow 
induced by the northern chain of vorticity anomalies, while the solid arrows give the 
flow induced by the southern chain. At the points along the wavy northern interface 
where there is no interface displacement , the northern vorticity anomalies induce a 
displacement which tends to propagate the northern wave westward (en = -21.6 
ms-1 ) , but the southern vorticity anomalies induce a displacement which tends to 
propagate the northern wave eastward at 2.8 ms-1 . Similarly, at the points along 
the wavy southern interfa e where there is no interface displacement , the southern 
vorticity anomalies induce a displacement which tends to propagate the southern 
wave eastward (e., = 8 ms- 1), but the northern vorticity anomalies induce a dis-
placement which tends to propagate the southern wave westward at 2.8 ms-1 . With 
the basic zonal flow included, the net result is that the waves are phase locked and 
propagate westward (er = -6.8ms-1 ) . In addition, displaced fluid particles on the 
northern interface will be even further displaced by the flow induced by the vorticity 
anomalies of the southern interface, and vice versa. This interdependence between 
the two counterpropagating Rossby waves has been eloquently described by Hoskins 
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Figure 9. Top panel shows the total streamfunction solution determined from ( 4.25) . 
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Figure 10. Interpretation of monsoon trough shear zone breakdown through barotropic 
instability. The moist convection of the monsoon trough produces a zonal 
strip of enhanced negative vorticity, with associated positive and negative 
jumps of vort icity at the northern and southern interfaces of the strip with 
the surrounding fluid (units are 10-5 s-1 ). Undulations on the interfaces 
produce chains of vorticity anomalies indicated by the open (northern) 
and solid (southern) sign symbols. The Rossby restoring mechanism tends 
to propagate the northern chain to the west (en = -21.6 ms-1 ) and the 
southern chain to the east ( c., = 8 ms- 1 ). The mutual influence of the two 
chains is to slow these two propagation speeds by 2.8 ms-1 , which (along 
with the effects of ii,) results in phase locking and westward propagation 
of the whole pattern ( Cr = -6.8 ms- 1 ). In addition the southern chain 
of vorticity anomalies induces a fl.ow (solid arrows on northern interface) 
which amplifies the displacements of the northern chain, and vice versa. 
In this way there is both phase locking and growth. 
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et al. (1985 , section 6b) as follows: "The induced velocity field of each Rossby wave 
keeps the other in step, and makes the other grow." 

e. nonlinear regime 

There are many interesting nonlinear aspects to the barotropic instability prob-
lem. Elegantly illustrated discussions of the nonlinear regime can be found in a 
paper by Lesieur et al. (1988) and in the recent textbook by Lesieur (1990, section 
3.1 and Plates 7- 8) , who has described the time evolution of an unstable hyper-
bolic tangent shear layer in terms of the formation of fundamental eddies and the 
successive pairing or merging of these eddies. 

Further insight into the nonlinear evolution of unstable waves in a shear layer 
has been obtained by Dritschel (1989), Pratt et al. (1991) and Pratt and Pedlosky 
(1991) using the method of contour dynamics (Zabusky et al. 1979, Zabusky and 
Overman 1983, Dritschel 1988). The method is specifically designed for piecewise-
constant vorticity distributions such as the one used in our three region model. 
Basically, one simply predicts the position of the contours separating the regions of 
constant vorticity. An initial unstable strip of uniform vorticity with small undu-
lations on its northern and southern contours can distort and evolve into a pattern 
in which the vorticity becomes "pooled" into rotating elliptical regions connected 
to each other by filaments or strands of high vorticity fluid. Fo he Australian 
monsoon case this nonlinear evolution is schematically illustrated n Fig. 11. The 
pattern is reminiscent of satellite images showing pooled and filamented regions of 
cumulus convection during ITCZ breakdown (see Hack et al. 1989, Fig. 1 for an 
Eastern Pacific example). At later times the pooled regions become more sym-
metric and the filaments thinner. This demonstrates the remarkable fact that the 
fundamental ( and nonlinear) dynamics necessary to t ransform an ITCZ zonal strip 
of potential vorticity into nearly axisymmetric tropical cyclones is inherent in a 
simple three region nondivergent barotropic model. 

In concluding this section we would like to make two additional comments. 
First, by using the preceeding barotropic analysis we do not wish to imply that 
the breakdown of the ITCZ is a purely barotropic process. Certa~nly, baroclinic 
and moist physical processes must play an important role. However, there does 
appear to be a strong underlying component which is fundamentally barotropic in 
nature. Second, we note that the counterpropagating Rossby wave interpretation of 
barotropic instability is not the only way we can understand the breakdown of the 
ITCZ. Another interpretation of barotropic instability is provided by an argument 
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Figure 11. Schematic illustration of the nonlinear development of a zonal strip 
of enhanced negative vorticity. The most unstable configuration ( upper 
diagram) grows nonlinearly into elliptical regions of pooled vorticity con-
nected by thin filaments. At later times the pooled regions become more 
symmetrical. 
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based on wave overreflection from critical latitudes (see Lindzen and Tung 1978, 
McIntyre and Weissman 1978, and the review article of Lindzen 1988). According 
to this argument the Rayleigh and Fj¢rtoft necessary conditions for barotropic in-
stability are also sufficient conditions for the existence of overreflected waves. The 
conditions are that d( / d</> change sign in the domain, that a critical latitude exist 
(in the hyperbolic tangent shear layer case of Fig. 6 the critical latitude lies within 
the region of d(/d</> < 0) , and that Rossby waves are overreflected at the critical 
latitude and contained in such a way as to be repeatedly overreflected. Although 
considerable progress toward understanding barotropic and baroclinic instability 
can be made using the concepts of wave overreflection, the method is more mathe-
matically involved and perhaps ( to most) less intuitive than the counterpropagating 
Rossby wave arguments given above. 

5. Divergent barotropic instability of the monsoon trough shear zone 

Some of the nondivergent barotropic stability theorems of the previous section 
can be generalized to the divergent barotropic model and to discretely layered (but 
not continuously stratified) primitive equation models on the ,B-plane and sphere 
(Ripa 1983, 1991). For the spherical shallow water case we consider the linearized 
equations 

8u' _ 8u' , 8u ( . utan</>) , 8h' -8 + U ,1.,8 , + V 8 ,1., - 20 Slll <p + V + g 8 , = 0, t a cos 'f' A a 'f' a a cos </> A 
(5.1) 

8v' _ 8v' ( . 2utan¢) , 8h' 
8t + u a cos ¢8,\ + 20 sm </> + a u + g a8</> = O, (5.2) 

-+u---+v-+h 8h' 8h' , 8h - ( 8u' 8(v' cos</>)) __ O, 
8t a cos ¢8,\ a8</> a cos ¢8,\ a cos ¢8¢ 

(5.3) 

where the primes denote small perturbations about a purely zonal basic fl.ow, u(</>), 
with associated depth h( </> ). 

and 

To derive Ripa's theorem we need to combine (5.1)- (5.3) into equations for 

M' = h' u' a cos</>, 

P' = ( 8v' _ 8(u' cos</>)_ Ph') , 
h acos</>8,\ acos</>8</> 
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where P = [2n sin</> - 8( u cos</>)/ a cos </>8</>] /h. To derive the equation for E' we 
form (hu' + h'u) • (5.1) + (hv') • (5.2) + (uu' + gh') • (5.3) to obtain 

8E' -h2 _ 'P' 8[(uu' + gh')(hu' + h'u)] 8[(uu' + gh')hv' cos</>] - + UV + --------- + -------- = 0. (5 7) 
8t a cos </>8>. a cos </>8</> · 

Integrating ( 5. 7) over the surface of the earth we obtain 

Jr f (8E' -2 1 1 ) J 8t + h v P wa cos</> cos</> d>. d</> = 0, · (5.8) 

where the basic state angular velocity w is related to the basic state zonal wind u by 
u = wa cos</>. To derive the equation for M' we form (h' a cos</>)• (5.1) + ( u' a cos</>)• 
(5.3). Integrating the result over the surface of the earth we obtain 

j j ( 8:t + h2v' P' a cos</>) cos</> d>. d</> = 0. (5.9) 

Multiplying (5.9) by the constant w0 , and then subtracting the result from (5.8), 
we obtain 

Jr f (8(E' - woM') -2 , , ) J 8t +h vP(w-wo)acos</> cos<f>d>.d</>=0. (5.10) 

The equation for P' , obtained by forming the vorticity equation from (5.1)- (5.2) 
and then eliminating the divergence using (5.3) , takes the form 

VP' dP I 

Vt + ad</> v = O' (5.11) 

where V /Vt is the same operator used in ( 4.5a). Again, defining the meridional 
particle displacement 'T/ by VTJ /Vt = v' , we can integrate ( 5.11) to obtain 

I dP 
p + ad</>T/ = O, 

which is a generalization of (4.4) . Multiplication of (5.12) by v' yields 

IP' E__ ( dP l 2) - 0 
v + Vt a d</> 2 T/ - · 

Finally, using (5.13) in (5.10) for v' P' we obtain 
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which is the divergent barotropic generalization of the nondivergent barotropic re-
sult (4.7). We now argue that, if E' - w0 M' 0 and (w0 - w)8P /8¢ 0, the con-
straint (5.14) does not allow TJ 2 to grow in an overall sense. From (5.4) we note that 
E' 0 if u2 gh. By a similar argument , E' -w0 M' 0 if [(w0 -w)acos¢] 2 gh. 
We can now state Ripa's shallow water generalization of the theorems of Rayleigh 
and Fj0rtoft. If there exists any value of wo such that 

and 2 -[ ( wo - w )a cos ¢] g h (5.15a, b) 

for all ¢ , then the flow is stable to infinitesimal perturbations. Ripa has also dis-
cussed several corollaries of (5.15) , one of which is obtained by choosing w0 

max[w]. This results in the following weaker sufficient condition for stability. If 

and [ 
(gh)l/2] 

max[w] min w + <P a cos 
(5.16a, b) 

for all ¢, then the flow is stable to infinitesimal perturbations. 
To recover the stability results for the nondivergent barotropic model from the 

stability results for the divergent barotropic model we consider the limit gh --+ oo, 
in which case ( 5.15b) is satisfied for any finite w0 . Then, there is no difference 
between vorticity and potential vorticity, and a choice of w0 such that wo -w( ¢) < 0 
everywhere leads to d-/ d</J 0 everywhere as sufficient for stability, while a choice of 
w0 such that w0 -w(</J ) > 0 everywhere leads to d(/d</J 0 everywhere as sufficient 
for stability. Thus, a necessary condition for instability is that d(, / d</J have both 
signs (Rayleigh's theorem). It is also of interest to note that , if d(/d</J = 0 at¢=¢, 
then the choice w0 = w(¢) leads from (5.15a) to [w(¢)-w(¢)]d(/d¢ < 0 somewhere 
as a necessary condition for instability (Fj0rtoft 's theorem). 

In applications of shallow water stability theory to atmospheric data or to the 
interpretation of atmospheric models wi ~h continuous stratification there is consider-
able freedom in the choice of mean depth. However, reasonable h's should probably 
exceed 100m. For such h's, the zonal flows generated by a few days of ITCZ convec-
tion satisfy neither (5.16) nor the more general condition (5.15). Again, to actually 
confirm that the monsoon zonal fl.ow is unstable in the divergent barotropic model, 
an eigenvalue-eigenfunction calculation is useful. Thus: let us now use the linearized 
shallow water equations ( 5.1 )- ( 5.3) as the basis for a calculation of the growth rates 
and associated structures for wave disturbances on the observed zonally averaged 
basic state. The present discussion is meant to complement Dunkerton 's (1990) 
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recent detailed investigation of the effects of horizontal divergence on barotropic 
instability. The solution method for the present model is described in detail in 
Stevens and Ciesielski (1986). For a given zonal wavenumber, fluid depth h and 
basic state zonal flow u, the model computes a set of complex eigenvalues (ar +iai) 
and corresponding eigenfunctions ( u' , v', gh'). A positive imaginary part indicates 
an unstable mode where ai is the growth rate. The real part of the eigenvalue is 
related to the zonal phase speed such that ar > 0 implies an eastward propagating 
phase speed. 

For our present model calculations, the basic state used was taken from the 
sector average winds in Fig. 2 at 315 K (700 mb) which is the level of the lower 
tropospheric zonal wind maxima. This wind profile and associated vorticity istri-
bution are shown in Fig. 13. In the shallow water model, potential and absolute 
vorticity are related by P = (/h. For the present model the necessary condition for 
inertial instability to occur is that ff> < 0 (Stevens 1983), whereas for barotropic 
instability the necessary condition is that of>/ 8¢ < 0 somewhere in the fluid (Ripa 
1983). Both of these conditions are met in the f> profile implied by Fig. 13. For this 
basic state u field , the computed growth rates (ai) are shown as a function of zonal 
wavenumber in Fig. 12 for several values of equivalent depth. As seen here , two 
distinct types of instabilities are present , the characteristics of which are described 
below. 

Inertial instability results in two of the modes (depicted with dashed lines) 
in Fig. 12. The first of these with an e-folding time less than 2 days occurs at 
the smallest equivalent depth (h = O.Olm) examined here. This inertial instability 
mode with maximum growth rate on the symmetric axis is commonly referred to as 
symmetric instability. Despite its fast growth rate, Dunkerton (1981) has pointed 
out that a scale-selective dissipation process will act to stabilize instabilities at these 
short vertical scales. As the vertical scale increases, the growth rates of the inertial 
instability mode decrease rapidly. For example at h = Im, the e-folding time for 
inertial instability is greater than 5 days. This mode is centered near 2 S (i.e., 
in the region where ff> < 0) and is confined latitudinally to within 5 degrees of 
this latitude. With its slow growth rate it is uncertain how much this mode would 
amplify against the atmosphere's dissipative effects to be an effective mechanism 
for restoring the atmosphere to a state where ff> > 0. The phase speed for these 
modes is nearly independent of zonal wavenumber and is ~ 6 ms-1 . 

Barotropic instability results in the other two modes ( depicted with solid lines) 
in Fig. 12. The e-folding time for these modes attains a minimum of 2.7 days (for 
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Figure 12. Nondimensional growth rates associated with the zonal .wind profile in 
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the equivalent depth in meters. Scale on the right gives thee-folding time 
in days. The dashed lines represent inertial instabilities and the solid lines 
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h = 1000m) and 3.9 days (for h = 250m). This effect of decreasing growth rate with 
decreasing equivalent depth ( or increasing divergence) is consistent with Philander's 
(1976) analysis, which shows that divergence stablilizes barotropic instabilities as-
sociated with shear layers. The corresponding period and phase speed for both 
barotropic modes in Fig. 12 is approximately 7. 7 days and -6.3 ms-1 , respectively. 
These growth rates and phase speeds compare quite favorably with those obtained 
from the three-region model, with the exception that the wavelength of maximum 
instability for the present model ( 4200 km) is considerably shorter than that found 
by the three-region model for Yo = 500 km (7000 km, cf. Fig. 8a). 

The eigenfunction corresponding to the most unstable barotropic mode is shown 
in Fig. 13 for the h=250m case. The maxima in the perturbation geopotential and 
winds are centered near 20 S which is in the region of the reversed PV gradient. 
Equatorward of this latitude the perturbations fields exhibit a southeast-northwest 
slope. This tilt of the disturbance axis is in the opposite direction to the shear 
profile (middle panel of Fig. 13) and is characteristic of a barotropically unstable 
wave in which u'v' has the opposite sign to du/d</> (Haltiner and Williams 1980). 
It is interesting to note the similarity between the modal structure in Fig. 13 and 
the observed instantaneous perturbation winds during an active period over the 
AMEX region (Fig. 14) . In this figure one can detect a wave-like feature with a 
maximum perturbat ion near 20 S, a southeast-northwest tilt and a wavelength of 
~4500 km. These general characteristics were observed at several times during ac-
tive phases of AMEX. Despite the limitations of the model used here, specifically 
the lack of moist physics and vertical structure, the similarity between the observed 
and modeled fields suggests that barotropic instability plays an important role in 
the dynamics of the AMEX region. 

6. Concluding remarks 

Through the use of a zonally symmetric balanced model we have shown that 
the potential vorticity in the monsoon trough evolves in such a way as to produce 
a region of reversed poleward gradient of potential vorticity on the poleward side 
of the trough in the lower troposphere and ·on the equatorward side of the trough 
in the upper troposphere. This sets the stage for combined barotropic-baroclinic 
instability, with the barotropic process playing a crucial role. 

We have studied the barotropic instability of the monsoon trough flows using 
both nondivergent and divergent barotropic models. For the nondivergent model 
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Figure 13. The left panel shows the eigenfunctions over one wavelength at maximum 
instability (zonal wavenumber 9) for Ii = 250m and for the u profile in 
the middle panel, which comes from the sector average winds in Fig. 2 at 
315 K. Arrows represent perturbation wind velocities and solid (dashed) 
lines show positive (negative) contours of perturbation geopotential. The 
gcopotcntial field has been normalized by the maximum value of geopo-
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a useful idealizati.on of the zonal flow produced by ITCZ convection is the hyper-
bolic tangent shear layer. For reasonable heating rates and widths, the hyperbolic 
shear layer can b8come sufficiently strong and narrow in 2- 3 days so as to produce 
barotropically unstable waves with e-folding times of order 2 days. A further ideal-
ization of the hyperbolic tangent shear layer into a three region model leads to an 
explicit interpretation of the barotropically unstable modes in terms of phase locked 
counterpropagating Rossby waves. For the divergent barotropic model, a stability 
analysis of the zonal wind profile over the AMEX region has shown the existence of 
barotropic instability with the following characteristics: most unstable wavelength 
of 4200 km, e-fo)ding time of 2. 7 days, and phase speed of -6.3 ms-1 . The tilt of 
the disturbance axis (southeast- northwest) is opposite to the mean shear, which is 
characteristic of amplifying waves. Observations of a similar structure in the in-
stantaneous AMEX velocity fields suggest that barotropic instability plays a major 
role in the evolu7.ion of wave disturbances over northern Australia. 

These dynamical principles lead to the notion that many ITCZ regions of the 
world ( e.g., northern Australia, northeast Pacific, northern Africa and the northeast 
At lantic) share the same basic dynamics and are capable of in situ production of 
easterly waves through dynamic instability. 
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