275 research outputs found

    Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation

    Full text link
    Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using the parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 K to 500 K, the dependence of the Seebeck coefficient, the electron thermal and electrical conductivity as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration are investigated in the constant-relaxation-time approximation. The carrier confinement is shown to play essential role for square nanowires with thickness less than 30 nm. The confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of Seebeck coefficient in contrast to the excess holes (impurities). The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. The carrier confinement increases maximum value of ZT and shifts it towards high temperatures. For the p-type bismuth telluride nanowires with growth direction [110], the maximum value of the figure of merit is equal to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for sections 2-

    Photochemistry of framework-supported M(diimine)(CO)₃X complexes in 3D Lithium-Carboxylate metal−organic frameworks: monitoring the effect of framework cations

    Get PDF
    The structures and photochemical behaviour of two new metal-organic frameworks are reported. Reaction of Re(2,2ʹ-bipyʹ-5,5ʹ-dicarboxylic acid)(CO)₃Cl or Mn(2,2ʹ-bipyʹ-5,5ʹ- dicarboxylic acid)(CO)₃Br with either LiCl or LiBr, respectively, produces single crystals of {Li₂(DMF)₂[(2,2ʹ-bipyʹ-5,5ʹ-dicarboxylate)Re(CO)₃Cl]}n (ReLi) or {Li₂(DMF)₂[(2,2ʹ-bipyʹ- 5,5ʹ-dicarboxylate)Mn(CO)₃Br]}n (MnLi). The structures formed by the two MOFs comprise one-dimensional chains of carboxylate-bridged Li(I) cations that are cross-linked by units of Re(2,2ʹ-bipyʹ-5,5ʹ-dicarboxylate)(CO)₃Cl (ReLi) or Mn(2,2ʹ-bipyʹ-5,5ʹ- dicarboxylate)(CO)₃Br (MnLi). The photophysical and photochemical behaviour of both ReLi and MnLi are probed. The rhenium-containing MOF, ReLi, exhibits luminescence and the excited state behaviour, as established by time-resolved infra-red measurements, are closer in behaviour to that of unsubstituted [Re(bipy)(CO)₃Cl] rather than a related MOF where the Li(I) cations are replaced by Mn(II) cations. These observations are further supported by DFT calculations. Upon excitation MnLi forms a dicarbonyl species which rapidly recombines with the dissociated CO, in a fashion consistent with the majority of the photoejected CO not escaping the MOF channels

    Controlling the Two-Dimensional Self-Assembly of Functionalized Porphyrins via Adenine-Thymine Quartet Formation

    Get PDF
    The development of supramolecular synthons capable of driving hierarchical two-dimensional (2D) self-assembly is an important step toward the growth of complex and functional molecular surfaces. In this work, the formation of nucleobase quartets consisting of adenine and thymine groups was used to control the 2D self-assembly of porphyrins. Tetra-(phenylthymine) zinc porphyrin (Zn-tetra-TP) and tetra-(phenyladenine) porphyrin (tetra-AP) were synthesized, and scanning tunneling microscopy (STM) experiments were performed to visualize their self-assembly at the liquid–solid interface between an organic solvent and a graphite surface. Monocomponent solutions of both Zn-tetra-TP and tetra-AP form stable 2D structures with either thymine–thymine or adenine–adenine hydrogen bonding. Structural models based on STM data were validated using molecular mechanics (MM) simulations. In contrast, bicomponent mixtures showed the formation of a structure with p4 symmetry consisting of alternating Zn-tetra-TP and tetra-AP molecules in a chessboard type pattern. The relative positions of the porphyrin components were identified from STM images via contrast changes associated with the zinc atom present in Zn-tetra-TP. MM simulations suggest that hydrogen bonding interactions within these structures are based on the formation of adenine–thymine (ATAT) quartets with Watson–Crick base pairing between adenine and thymine groups

    Retention of perylene diimide optical properties in solid-state materials through tethering to nanodiamonds

    Get PDF
    The synthesis of nanodiamond-perylene diimide composites is reported. Suitably hydroxyl-functionalised perylene diimides (PDIs) are reacted with carboxylic acid functionalised nanodiamonds (NDs) through ester formation. The ND-PDI nanocomposite materials were characterised using a variety of different techniques confirming retention of the ND cores and interestingly the dye properties of the PDIs. In particular, fluorescence measurements suggest that PDIs tethered to NDs retain the characteristics of solution-phase PDIs rather than the optical properties associated with solid-state PDIs which are typically modified due to aggregation. Our relatively simple approach provides a mechanism for maintaining the solution-phase properties of PDIs in solid-state materials

    Thionated naphthalene diimides: tuneable chromophores for applications in photoactive dyads

    Get PDF
    Varying the degree of thionation of a series of naphthalene diimide (NDI) and naphthalic imides (NI) phenothiazine dyad systems afford a systematic approach for tuning of the system’s donor-acceptor energy gap. Each dyad was compared to model NDI/NI systems and fully characterised through single crystal X-ray diffraction, NMR, cyclic voltammetry, electron paramagnetic resonance (EPR), transient absorption spectroscopy (TA), time-resolved infra-red spectroscopy (TRIR) and DFT. The measurements reveal that thionation increases both electron affinity of the NDI/NI acceptor dyad component and accessibility of the singly or doubly reduced states. Furthermore, FTIR and TA measurements show that excited state behaviour is greatly affected by thionation of the NDI and induces a decrease in the lifetime of the excited states formed upon the creation of charge-separated states

    Influence of molecular design on radical spin multiplicity: characterisation of BODIPY dyad and triad radical anions

    Get PDF
    This journal is © the Owner Societies. A strategy to create organic molecules with high degrees of radical spin multiplicity is reported in which molecular design is correlated with the behaviour of radical anions in a series of BODIPY dyads. Upon reduction of each BODIPY moiety radical anions are formed which are shown to have different spin multiplicities by electron paramagnetic resonance (EPR) spectroscopy and distinct profiles in their cyclic voltammograms and UV-visible spectra. The relationship between structure and multiplicity is demonstrated showing that the balance between singlet, biradical or triplet states in the dyads depends on relative orientation and connectivity of the BODIPY groups. The strategy is applied to the synthesis of a BODIPY triad which adopts an unusual quartet state upon reduction to its radical trianion

    Photophysics and electrochemistry of a platinum-acetylide disubstituted perylenediimide

    Get PDF
    The synthesis and photophysical study of a perylene diimide (PDI) functionalised with platinum acetylide units of the type, trans{–C[triple bond, length as m-dash]C–Pt(PBu3)2–C[triple bond, length as m-dash]C–Ph} and comparison with a phenylacetylide substituted model compound are reported. The model compound demonstrates typical perylene absorption and photoluminescence spectra characteristic of singlet excited state formation and decay. The Pt-substitution, however, appears to induce spin–orbit coupling into the chromophore and giving rise to a triplet excited state which was confirmed by transient absorption measurements. This excited state is quenched by oxygen, leading to the formation of singlet oxygen in dichloromethane, recorded by time-resolved near-infrared luminescence measurements

    Selective photoinduced charge separation in perylenediimide-pillar[5]arene rotaxanes

    Get PDF
    The ability to control photoinduced charge transfer within molecules represents a major challenge requiring precise control of the relative positioning and orientation of donor and acceptor groups. Here we show that such photoinduced charge transfer processes within homo- and hetero-rotaxanes can be controlled through organisation of the components of the mechanically interlocked molecules, introducing alternative pathways for electron donation. Specifically, studies of two rotaxanes are described: a homo[3]rotaxane, built from a perylenediimide diimidazolium rod that threads two pillar[5]arene macrocycles, and a hetero[4]rotaxane in which an additional bis(1,5-naphtho)-38-crown-10 (BN38C10) macrocycle encircles the central perylenediimide. The two rotaxanes are characterised by a combination of techniques including electron diffraction crystallography in the case of the hetero[4]rotaxane. Cyclic voltammetry, spectroelectrochemistry, and EPR spectroscopy areemployed to establish the behaviour of the redox states of both rotaxanes and these data are used to inform photophysical studies using time-resolved infra-red (TRIR) and transient absorption (TA) spectroscopies. The latter studies illustrate the formation of a symmetrybreaking charge-separated state in the case of the homo[3]rotaxane in which charge transfer between the pillar[5]arene and perylenediimide is observed involving only one of the twomacrocyclic components. In the case of the hetero[4]rotaxane charge separation is observed involving only the BN38C10 macrocycle and the perylenediimide leaving the pillar[5]arene components unperturbed

    LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor

    Get PDF
    LAL regulators (Large ATP-binding regulators of the LuxR family) constitute a poorly studied family of transcriptional regulators. Several regulators of this class have been identified in antibiotic and other secondary metabolite gene clusters from actinomycetes, thus they have been considered pathway-specific regulators. In this study we have obtained two disruption mutants of LAL genes from S. coelicolor (Δ0877 and Δ7173). Both mutants were deficient in the production of the polyketide antibiotic actinorhodin, and antibiotic production was restored upon gene complementation of the mutants. The use of whole-genome DNA microarrays and quantitative PCRs enabled the analysis of the transcriptome of both mutants in comparison with the wild type. Our results indicate that the LAL regulators under study act globally affecting various cellular processes, and amongst them the phosphate starvation response and the biosynthesis of the blue-pigmented antibiotic actinorhodin. Both regulators act as negative modulators of the expression of the two-component phoRP system and as positive regulators of actinorhodin biosynthesis. To our knowledge this is the first characterization of LAL regulators with wide implications in Streptomyces metabolism

    Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies

    Get PDF
    Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of the electric field portion of the wave with reactants during the synthesis of MOFs. In order to overcome this lack of fundamental understanding, information about the dielectric properties of the reactants is required. In this work the dielectric constants (ε′) and loss factors (ε′′) of benzene-1,4-dicarboxylic acid (H2BDC; also known as terephthalic acid) and a number of M(III) (M = metal) salts dissolved in deionized water were measured as a function of frequency, temperature and concentration and with varying anions and cations. Dielectric data confirm the aqueous M(III) salts to be strong microwave absorbers, particularly at 915 MHz. M(III) salts with mono-anionic ligands (for example chlorides and nitrates) exhibit higher losses than di-anionic salts (sulfates) demonstrating that the former are heated more effectively in an applied microwave field. Of the M(III) salts containing either singly- or doubly-charged anions, those containing Fe(III) have the highest loss indicating that they will heat more efficiently than other M(III) salts such as Cr(III) and Al(III). Interestingly, H2BDC exhibits little interaction with the electric field at microwave frequencies
    corecore