581 research outputs found

    Detectability of dirty dust grains in brown dwarf atmospheres

    Get PDF
    Dust clouds influence the atmospheric structure of brown dwarfs, and they affect the heat transfer and change the gas-phase chemistry. However, the physics of their formation and evolution is not well understood. In this letter, we predict dust signatures and propose a potential observational test of the physics of dust formation in brown dwarf atmosphere based on the spectral features of the different solid components predicted by dust formation theory. A momentum method for the formation of dirty dust grains (nucleation, growth, evaporation, drift) is used in application to a static brown dwarf atmosphere structure to compute the dust grain properties, in particular the heterogeneous grain composition and the grain size. Effective medium and Mie theory are used to compute the extinction of these spherical grains. Dust formation results in grains whose composition differs from that of grains formed at equilibrium. Our kinetic model predicts that solid amorphous SiO2[s] (silica) is one of the most abundant solid component followed by amorphous MgSiO4[s] and MgSiO3[s], while SiO2[s] is absent in equilibrium models because it is a metastable solid. Solid amorphous SiO2[s] possesses a strong broad absorption feature centered at 8.7mum, while amorphous Mg2SiO4[s]/MgSiO3[s] absorb at 9.7mum beside other absorption features at longer wavelength. Those features at lambda < 15mum are detectable in absorption if grains are small (radius < 0.2mum) in the upper atmosphere as suggested by our model. We suggest that the detection of a feature at 8.7mum in deep infrared spectra could provide evidence for non-equilibrium dust formation that yields grains composed of metastable solids in brown dwarf atmospheres. This feature will shift towards 10mum and broaden if silicates (e.g. fosterite) are much more abundant.Comment: A&A Letter, accepte

    A benzene interference single-electron transistor

    Full text link
    Interference effects strongly affect the transport characteristics of a benzene single-electron transistor (SET) and for this reason we call it interference SET (I-SET). We focus on the effects of degeneracies between many-body states of the isolated benzene. We show that the particular current blocking and selective conductance suppression occurring in the benzene I-SET are due to interference effects between the orbitally degenerate states. Further we study the impact of reduced symmetry due to anchor groups or potential drop over the molecule. We identify in the quasi-degeneracy of the involved molecular states the necessary condition for the robustness of the results.Comment: 17pages, 9 figures, revised versio

    Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor

    Full text link
    We demonstrate a tunable, narrow-band filter based on optical-pumping-induced circular dichroism in rubidium vapor. The filter achieves a peak transmission of 14.6%, a linewidth of 80 MHz, and an out-of-band extinction >35 dB. The transmission peak can be tuned within the range of the Doppler linewidth of the D1 line of atomic rubidium at 795 nm. While other atomic filters work at frequencies far from absorption, the presented technique provides light resonant with atomic media, useful for atom-photon interaction experiments. The technique could readily be extended to other alkali atoms.Comment: 3 Pages, 4 figure

    Erythropoietin as candidate for supportive treatment of severe COVID-19

    Get PDF
    In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Transport through a double quantum dot system with non-collinearly polarized leads

    Full text link
    We investigate linear and non-linear transport in a double quantum dot system weakly coupled to spin-polarized leads. In the linear regime, the conductance as well as the non-equilibrium spin accumulation are evaluated in analytic form. The conductance as a function of the gate voltage exhibits four peaks of different height, with mirror symmetry with respect to the charge neutrality point. As the polarization angle is varied, the position and shape of the peaks changes in a characteristic way which preserves the electron-hole symmetry of the problem. In the nonlinear regime negative differential conductance features occur for non collinear magnetisations of the leads. In the considered sequential tunneling limit, the tunneling magneto resistance (TMR) is always positive with a characteristic gate voltage dependence for non-collinear magnetization. If a magnetic field is added to the system, the TMR can become negative.Comment: 18 pages, 13 figures, 5 tables; revised published versio

    Breakup Density in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of protons, deuterons and tritons with alpha particles from spectator decays following 197Au + 197Au collisions at 1000 MeV per nucleon have been measured with two highly efficient detector hodoscopes. The constructed correlation functions, interpreted within the approximation of a simultaneous volume decay, indicate a moderate expansion and low breakup densities, similar to assumptions made in statistical multifragmentation models. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Time Scales in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of p-alpha, d-alpha, and t-alpha from spectator decays following Au + Au collisions at 1000 AMeV have been measured with an highly efficient detector hodoscope. The constructed correlation functions indicate a moderate expansion and low breakup densities similar to assumptions made in statistical multifragmentation models. In agreement with a volume breakup rather short time scales were deduced employing directional cuts in proton-proton correlations. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.MnComment: 8 pages, with 5 included figures; To appear in the proceedings of the CRIS 2000 conference; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Addressing the 'hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues

    Get PDF
    Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Main body of the abstract Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. Short conclusion Substitution of EPO may among other beneficial EPO effects in severe COVID-19 circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted
    corecore