4,961 research outputs found

    Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft

    Get PDF
    The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system

    Non-canonical Translation in Plant RNA Viruses

    Get PDF
    Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5â€Č cap structure and/or the 3â€Č poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.The research program in Aranda's lab is supported by grants AGL2015-65838 (MINECO, Spain) and ARIMNet2-EMERAMB(ERA-Net-618127, EU FP7). WM is funded by NIH grant number R01 GM067104.Peer reviewedPeer Reviewe

    Constraints on Natural MNS Parameters from |U_e3|

    Full text link
    The MNS matrix structure emerging as a result of recent neutrino measurements strongly suggests two large mixing angles (solar and atmospheric) and one small angle (|U_e3| << 1). Especially when combined with the neutrino mass hierarchy, these values turn out to impose rather stringent constraints on possible flavor models connecting the three active fermion generations. Specifically, we show that an extremely small value of |U_e3| would require fine tuning of Majorana mass matrix parameters, particularly in the context of seesaw models.Comment: 21 pages, ReVTeX, 2 .eps figure files, updated references and acknowledgment

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte

    Determination of the Secondary Structure of an RNA fragment in Solution: Selective 2`- Hydroxyl Acylation Analyzed by Primer Extension Assay (SHAPE)

    Get PDF
    This protocol describes the methodology for the determination of the secondary structure of an RNA fragment in solution using Selective 2ÂŽ-Hydroxyl Acylation analyzed by Primer Extension, abbreviation SHAPE. It consists in the very fast chemical modification of flexible and therefore possibly single-stranded nucleotides in a sequence-independent manner using benzoyl cyanide (BzCN), forming 2ÂŽ-O-adducts. The modifications in the RNA are then analyzed by primer extension. Reverse transcriptase is blocked by the 2ÂŽ-O-adducts formed. The advantage of the method is, first, that not each RNA molecule studied but the primer used in the extension reaction is labelled and, second, that the resulting cDNA analyzed in sequencing gels is much more stable than the modified RN

    In-situ early age hydration of cement-based materials by synchrotron X-ray powder diffraction

    Get PDF
    Cement based binders are building materials of worldwide importance. Since these samples are very complex, the knowledge/control of their mineralogical composition are essential to design and predict materials with specific/improved performance. Rietveld quantitative phase analysis (RQPA) allows the quantification of crystalline phases and, when combined with specific methodologies, as the addition of an internal standard or the external standard approach (G-factor), amorphous and non-crystalline phases can also be quantified. However, to carry out a proper RQPA in hydrated cementitious-materials, a good powder diffraction pattern is necessary. In this work, synchrotron X-ray powder diffraction (SXRPD) has been used, allowing in-situ measurements during the early-age hydration process. This work deals with the early hydration study of cement-based materials. The studied samples were: a laboratory-prepared belite calcium sulphoaluminate (BCSAF) clinker (non-active) mixed with 10wt% gypsum, labelled G10B0; two active laboratory-prepared BCSAF clinkers (activated with 2wt% borax), one mixed with 10wt% gypsum and the other one with 10wt% monoclinic-bassanite, hereafter named G10B2 and B10B2, respectively; and an environmentally-friendly cement sample from Henkel, composed of bassanite mixed with 15wt% Portland cement and 10wt% Metakaolin, labelled H1. Anhydrous G10B0 contains beta-belite and orthorhombic-ye'elimite as main phases, while alpha'H-belite and pseudo-cubic-ye'elimite are stabilized in G10B2 and B10B2, with the corresponding sulphate source. Anhydrous H1 contains monoclinic and hexagonal bassanite and alite as main phases. Ye'elimite, in the non-active BCSAF cement pastes, dissolves at a higher pace than in the active one (degree of reaction is α~25% and α~10% at 1 h, respectively) (both prepared with gypsum), with the corresponding differences in ettringite crystallisation (degree of precipitation is α~30% and α~5%, respectively). Moreover, the type of sulphate source has important consequences on the hydration of the active BCSAF cement pastes. Bassanite is quickly dissolved and it precipitates as gypsum within the first hour of hydration (in B10B2). At that time, ettringite starts to crystallize, and after 12 hours is almost fully crystallized, similar to G10B2. In H1, bassanite transforms into gypsum within the first hour, being the principal hydration product; ettringite starts to be formed just after few hydration minutes. These results are crucial in the understanding and development of improved cement materials.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    A new method for the solution of the Schrodinger equation

    Full text link
    We present a new method for the solution of the Schrodinger equation applicable to problems of non-perturbative nature. The method works by identifying three different scales in the problem, which then are treated independently: An asymptotic scale, which depends uniquely on the form of the potential at large distances; an intermediate scale, still characterized by an exponential decay of the wave function and, finally, a short distance scale, in which the wave function is sizable. The key feature of our method is the introduction of an arbitrary parameter in the last two scales, which is then used to optimize a perturbative expansion in a suitable parameter. We apply the method to the quantum anharmonic oscillator and find excellent results.Comment: 4 pages, 4 figures, RevTex

    Supersymmetric Flavor Models and the B --> phi K_S Anomaly

    Full text link
    We consider the flavor structure of supersymmetric theories that can account for the deviation of the observed time-dependent CP asymmetry in B --> phi K_S from the standard model prediction. Assuming simple flavor symmetries and effective field theory, we investigate possible correlations between sizable supersymmetric contributions to b --> s transitions and to flavor changing processes that are more tightly constrained. With relatively few assumptions, we determine the properties of minimal Yukawa and soft mass textures that are compatible with the desired supersymmetric flavor-changing effect and constraints. We then present explicit models that are designed (at least approximately) to realize these textures. In particular, we present an Abelian model based on a single U(1) factor and a non-trivial extra-dimensional topography that can explain the CP asymmetry in B --> phi K_S, while suppressing other supersymmetric flavor changing effects through a high degree of squark-quark alignment.Comment: 18 pages LaTeX, 3 eps figure

    U(2)-like Flavor Symmetries and Approximate Bimaximal Neutrino Mixing

    Get PDF
    Models involving a U(2) flavor symmetry, or any of a number of its non-Abelian discrete subgroups, can explain the observed hierarchy of charged fermion masses and CKM angles. It is known that a large neutrino mixing angle connecting second and third generation fields may arise via the seesaw mechanism in these models, without a fine tuning of parameters. Here we show that it is possible to obtain approximate bimaximal mixing in a class of models with U(2)-like Yukawa textures. We find a minimal form for Dirac and Majorana neutrino mass matrices that leads to two large mixing angles, and show that our result can quantitatively explain atmospheric neutrino oscillations while accommodating the favored, large angle MSW solution to the solar neutrino problem. We demonstrate that these textures can arise in models by presenting a number of explicit examples.Comment: 20 pages RevTex4, 2 figure
    • 

    corecore