3,925 research outputs found

    Magnetic translation groups as group extension

    Full text link
    Extensions of a direct product T of two cyclic groups Z_n1 and Z_n2 by an Abelian (gauge) group G with the trivial action of T on G are considered. All possible (nonequivalent) factor systems are determined using the Mac Lane method. Some of resulting groups describe magnetic translation groups. As examples extensions with G=U(1) and G=Z_n are considered and discussed.Comment: 10 page

    Re-Examination of Possible Bimodality of GALLEX Solar Neutrino Data

    Full text link
    The histogram formed from published capture-rate measurements for the GALLEX solar neutrino experiment is bimodal, showing two distinct peaks. On the other hand, the histogram formed from published measurements derived from the similar GNO experiment is unimodal, showing only one peak. However, the two experiments differ in run durations: GALLEX runs are either three weeks or four weeks (approximately) in duration, whereas GNO runs are all about four weeks in duration. When we form 3-week and 4-week subsets of the GALLEX data, we find that the relevant histograms are unimodal. The upper peak arises mainly from the 3-week runs, and the lower peak from the 4-week runs. The 4-week subset of the GALLEX dataset is found to be similar to the GNO dataset. A recent re-analysis of GALLEX data leads to a unimodal histogram.Comment: 14 pages, 8 figure

    Reanalysis of the GALLEX solar neutrino flux and source experiments

    Full text link
    After the completion of the gallium solar neutrino experiments at the Laboratori Nazionali del Gran Sasso (GALLEX}: 1991-1997; GNO: 1998-2003) we have retrospectively updated the GALLEX results with the help of new technical data that were impossible to acquire for principle reasons before the completion of the low rate measurement phase (that is, before the end of the GNO solar runs). Subsequent high rate experiments have allowed the calibration of absolute internal counter efficiencies and of an advanced pulse shape analysis for counter background discrimination. The updated overall result for GALLEX (only) is (73.4 +7.1 -7.3) SNU. This is 5.3% below the old value of (77.5 + 7.5 -7.8) SNU (PLB 447 (1999) 127-133) with a substantially reduced error. A similar reduction is obtained from the reanalysis of the 51Cr neutrino source experiments of 1994/1995.Comment: Accepted by Physics Letters B January 13, 201

    Characterizing Weak Chaos using Time Series of Lyapunov Exponents

    Full text link
    We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite- time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents close to zero to define regimes of ordered (stickiness), semi-ordered (or semi-chaotic), and strongly chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each regime, the transition between different regimes, and the regions in the phase-space associated to them. Applying our methodology to a chain of coupled standard maps we obtain: (i) that it allows for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems, when compared to the previous analyses based on the distribution of recurrence times; (ii) that the transition probabilities between different regimes are determined by the phase-space volume associated to the corresponding regions; (iii) the dependence of the Lyapunov exponents with the coupling strength.Comment: 8 pages, 6 figure

    Noise-enhanced trapping in chaotic scattering

    Get PDF
    We show that noise enhances the trapping of trajectories in scattering systems. In fully chaotic systems, the decay rate can decrease with increasing noise due to a generic mismatch between the noiseless escape rate and the value predicted by the Liouville measure of the exit set. In Hamiltonian systems with mixed phase space we show that noise leads to a slower algebraic decay due to trajectories performing a random walk inside Kolmogorov-Arnold-Moser islands. We argue that these noise-enhanced trapping mechanisms exist in most scattering systems and are likely to be dominant for small noise intensities, which is confirmed through a detailed investigation in the Henon map. Our results can be tested in fluid experiments, affect the fractal Weyl's law of quantum systems, and modify the estimations of chemical reaction rates based on phase-space transition state theory.Comment: 5 pages, 5 figure

    Gradpartikeln und Topikalisierung

    Get PDF

    The s=1/2s=1/2 Antiferromagnetic Heisenberg Model on Fullerene-Type Symmetry Clusters

    Get PDF
    The si=1/2s_{i}={1/2} nearest neighbor antiferromagnetic Heisenberg model is considered for spins sitting on the vertices of clusters with the connectivity of fullerene molecules and a number of sites nn ranging from 24 to 32. Using the permutational and spin inversion symmetries of the Hamiltonian the low energy spectrum is calculated for all the irreducible representations of the symmetry group of each cluster. Frustration and connectivity result in non-trivial low energy properties, with the lowest excited states being singlets except for n=28n=28. Same hexagon and same pentagon correlations are the most effective in the minimization of the energy, with the n=32−D3hn=32-D_{3h} symmetry cluster having an unusually strong singlet intra-pentagon correlation. The magnetization in a field shows no discontinuities unlike the icosahedral IhI_h fullerene clusters, but only plateaux with the most pronounced for n=28n=28. The spatial symmetry as well as the connectivity of the clusters appear to be important for the determination of their magnetic properties.Comment: Extended to include low energy spectra, correlation functions and magnetization data of clusters up to 32 site
    • …
    corecore