We investigate chaos in mixed-phase-space Hamiltonian systems using time
series of the finite- time Lyapunov exponents. The methodology we propose uses
the number of Lyapunov exponents close to zero to define regimes of ordered
(stickiness), semi-ordered (or semi-chaotic), and strongly chaotic motion. The
dynamics is then investigated looking at the consecutive time spent in each
regime, the transition between different regimes, and the regions in the
phase-space associated to them. Applying our methodology to a chain of coupled
standard maps we obtain: (i) that it allows for an improved numerical
characterization of stickiness in high-dimensional Hamiltonian systems, when
compared to the previous analyses based on the distribution of recurrence
times; (ii) that the transition probabilities between different regimes are
determined by the phase-space volume associated to the corresponding regions;
(iii) the dependence of the Lyapunov exponents with the coupling strength.Comment: 8 pages, 6 figure