5,048 research outputs found

    Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft

    Get PDF
    Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants

    Application of trajectory optimization techniques to upper atmosphere sampling flights using the F4-C Phantom aircraft

    Get PDF
    Altitude potential of an off-the-shelf F4-C aircraft is examined. It is shown that the standard F4-C has a maximum altitude capability in the region from 85000 to 95000 ft, depending on the minimum dynamic pressures deemed acceptable for adequate flight control. By using engine overspeed capability and by making use of prevailing winds in the stratosphere, it is suggested that the maximum altitude achievable by an F4-C should be in the vicinity of 95000 ft for routine flight operation. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants

    A differential game solution to the Coplanar tail-chase aerial combat problem

    Get PDF
    Numerical results obtained in a simplified version of the one on one aerial combat problem are presented. The primary aim of the data is to specify the roles of pursuer and evader as functions of the relative geometry and of the significant physical parameters of the problem. Numerical results are given in a case in which the slower aircraft is more maneuverable than the faster aircraft. A third order dynamic model of the relative motion is described, for which the state variables are relative range, bearing, and heading. The ranges at termination are arbitary in the present version of the problem, so the weapon systems of both aircraft can be visualized as forward firing high velocity weapons, which must be aimed at the tail pipe of the evader. It was found that, for the great majority of the ralative geometries, each aircraft can evade the weapon system of the other

    Measurement of Elastoresistivity at Finite Frequency by Amplitude Demodulation

    Full text link
    Elastoresistivity, the relation between resistivity and strain, can elucidate subtle properties of the electronic structure of a material and is an increasingly important tool for the study of strongly correlated materials. To date, elastoresistivity measurements have been predominantly performed with quasi-static (DC) strain. In this work, we demonstrate a method for using AC strain in elastoresistivity measurements. A sample experiencing AC strain has a time-dependent resistivity, which modulates the voltage produced by an AC current; this effect produces time-dependent variations in resisitivity that are directly proportional to the elastoresistivity, and which can be measured more quickly, with less strain on the sample, and with less stringent requirements for temperature stability than the previous DC technique. Example measurements between 10 Hz and 3 kHz are performed on a material with a large, well-characterized and temperature dependent elastoresistivity: the representative iron-based superconductor BaFe1.975_{1.975}Co0.025_{0.025}As2_2. These measurements yield a frequency independent elastoresistivity and reproduce results from previous DC elastoresistivity methods to within experimental accuracy. We emphasize that the dynamic (AC) elastoresistivity is a distinct material-specific property that has not previously been considered.Comment: 15 pages, 13 figure

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal

    Tight-Binding model for semiconductor nanostructures

    Full text link
    An empirical scpa3s_cp^3_a tight-binding (TB) model is applied to the investigation of electronic states in semiconductor quantum dots. A basis set of three pp-orbitals at the anions and one ss-orbital at the cations is chosen. Matrix elements up to the second nearest neighbors and the spin-orbit coupling are included in our TB-model. The parametrization is chosen so that the effective masses, the spin-orbit-splitting and the gap energy of the bulk CdSe and ZnSe are reproduced. Within this reduced scpa3s_cp_a^3 TB-basis the valence (p-) bands are excellently reproduced and the conduction (s-) band is well reproduced close to the Γ\Gamma-point, i.e. near to the band gap. In terms of this model much larger systems can be described than within a (more realistic) sp3ssp^3s^*-basis. The quantum dot is modelled by using the (bulk) TB-parameters for the particular material at those sites occupied by atoms of this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals). Strain-effects are included by using an appropriate model strain field. Within the TB-model, the strain-effects can be artifically switched off to investigate the infuence of strain on the bound electronic states and, in particular, their spatial orientation. The theoretical results for spherical nanocrystals are compared with data from tunneling spectroscopy and optical experiments. Furthermore the influence of the spin-orbit coupling is investigated

    Understanding the core density profile in TCV H-mode plasmas

    Full text link
    Results from a database analysis of H-mode electron density profiles on the Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the logarithmic electron density gradient increases with collisionality. By contrast, usual observations of H-modes showed that the electron density profiles tend to flatten with increasing collisionality. In this work it is reinforced that the role of collisionality alone, depending on the parameter regime, can be rather weak and in these, dominantly electron heated TCV cases, the electron density gradient is tailored by the underlying turbulence regime, which is mostly determined by the ratio of the electron to ion temperature and that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch can significantly contribute to the density peaking. Qualitative agreement between the predicted density peaking by quasi-linear gyrokinetic simulations and the experimental results is found. Quantitative comparison would necessitate ion temperature measurements, which are lacking in the considered experimental dataset. However, the simulation results show that it is the combination of several effects that influences the density peaking in TCV H-mode plasmas.Comment: 23 pages, 12 figure

    Finite-Size Scaling in the Energy-Entropy Plane for the 2D +- J Ising Spin Glass

    Full text link
    For L×LL \times L square lattices with L20L \le 20 the 2D Ising spin glass with +1 and -1 bonds is found to have a strong correlation between the energy and the entropy of its ground states. A fit to the data gives the result that each additional broken bond in the ground state of a particular sample of random bonds increases the ground state degeneracy by approximately a factor of 10/3. For x=0.5x = 0.5 (where xx is the fraction of negative bonds), over this range of LL, the characteristic entropy defined by the energy-entropy correlation scales with size as L1.78(2)L^{1.78(2)}. Anomalous scaling is not found for the characteristic energy, which essentially scales as L2L^2. When x=0.25x= 0.25, a crossover to L2L^2 scaling of the entropy is seen near L=12L = 12. The results found here suggest a natural mechanism for the unusual behavior of the low temperature specific heat of this model, and illustrate the dangers of extrapolating from small LL.Comment: 9 pages, two-column format; to appear in J. Statistical Physic

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
    corecore