5,048 research outputs found
Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft
Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants
Application of trajectory optimization techniques to upper atmosphere sampling flights using the F4-C Phantom aircraft
Altitude potential of an off-the-shelf F4-C aircraft is examined. It is shown that the standard F4-C has a maximum altitude capability in the region from 85000 to 95000 ft, depending on the minimum dynamic pressures deemed acceptable for adequate flight control. By using engine overspeed capability and by making use of prevailing winds in the stratosphere, it is suggested that the maximum altitude achievable by an F4-C should be in the vicinity of 95000 ft for routine flight operation. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants
A differential game solution to the Coplanar tail-chase aerial combat problem
Numerical results obtained in a simplified version of the one on one aerial combat problem are presented. The primary aim of the data is to specify the roles of pursuer and evader as functions of the relative geometry and of the significant physical parameters of the problem. Numerical results are given in a case in which the slower aircraft is more maneuverable than the faster aircraft. A third order dynamic model of the relative motion is described, for which the state variables are relative range, bearing, and heading. The ranges at termination are arbitary in the present version of the problem, so the weapon systems of both aircraft can be visualized as forward firing high velocity weapons, which must be aimed at the tail pipe of the evader. It was found that, for the great majority of the ralative geometries, each aircraft can evade the weapon system of the other
Measurement of Elastoresistivity at Finite Frequency by Amplitude Demodulation
Elastoresistivity, the relation between resistivity and strain, can elucidate
subtle properties of the electronic structure of a material and is an
increasingly important tool for the study of strongly correlated materials. To
date, elastoresistivity measurements have been predominantly performed with
quasi-static (DC) strain. In this work, we demonstrate a method for using AC
strain in elastoresistivity measurements. A sample experiencing AC strain has a
time-dependent resistivity, which modulates the voltage produced by an AC
current; this effect produces time-dependent variations in resisitivity that
are directly proportional to the elastoresistivity, and which can be measured
more quickly, with less strain on the sample, and with less stringent
requirements for temperature stability than the previous DC technique. Example
measurements between 10 Hz and 3 kHz are performed on a material with a large,
well-characterized and temperature dependent elastoresistivity: the
representative iron-based superconductor BaFeCoAs.
These measurements yield a frequency independent elastoresistivity and
reproduce results from previous DC elastoresistivity methods to within
experimental accuracy. We emphasize that the dynamic (AC) elastoresistivity is
a distinct material-specific property that has not previously been considered.Comment: 15 pages, 13 figure
First-principles investigation of 180-degree domain walls in BaTiO_3
We present a first-principles study of 180-degree ferroelectric domain walls
in tetragonal barium titanate. The theory is based on an effective Hamiltonian
that has previously been determined from first-principles
ultrasoft-pseudopotential calculations. Statistical properties are investigated
using Monte Carlo simulations. We compute the domain-wall energy, free energy,
and thickness, analyze the behavior of the ferroelectric order parameter in the
interior of the domain wall, and study its spatial fluctuations. An abrupt
reversal of the polarization is found, unlike the gradual rotation typical of
the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version
in two-column article style with embedded figures is available at
http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal
Tight-Binding model for semiconductor nanostructures
An empirical tight-binding (TB) model is applied to the
investigation of electronic states in semiconductor quantum dots. A basis set
of three -orbitals at the anions and one -orbital at the cations is
chosen. Matrix elements up to the second nearest neighbors and the spin-orbit
coupling are included in our TB-model. The parametrization is chosen so that
the effective masses, the spin-orbit-splitting and the gap energy of the bulk
CdSe and ZnSe are reproduced. Within this reduced TB-basis the
valence (p-) bands are excellently reproduced and the conduction (s-) band is
well reproduced close to the -point, i.e. near to the band gap. In
terms of this model much larger systems can be described than within a (more
realistic) -basis. The quantum dot is modelled by using the (bulk)
TB-parameters for the particular material at those sites occupied by atoms of
this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots
embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals).
Strain-effects are included by using an appropriate model strain field. Within
the TB-model, the strain-effects can be artifically switched off to investigate
the infuence of strain on the bound electronic states and, in particular, their
spatial orientation. The theoretical results for spherical nanocrystals are
compared with data from tunneling spectroscopy and optical experiments.
Furthermore the influence of the spin-orbit coupling is investigated
Understanding the core density profile in TCV H-mode plasmas
Results from a database analysis of H-mode electron density profiles on the
Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the
logarithmic electron density gradient increases with collisionality. By
contrast, usual observations of H-modes showed that the electron density
profiles tend to flatten with increasing collisionality. In this work it is
reinforced that the role of collisionality alone, depending on the parameter
regime, can be rather weak and in these, dominantly electron heated TCV cases,
the electron density gradient is tailored by the underlying turbulence regime,
which is mostly determined by the ratio of the electron to ion temperature and
that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch
can significantly contribute to the density peaking. Qualitative agreement
between the predicted density peaking by quasi-linear gyrokinetic simulations
and the experimental results is found. Quantitative comparison would
necessitate ion temperature measurements, which are lacking in the considered
experimental dataset. However, the simulation results show that it is the
combination of several effects that influences the density peaking in TCV
H-mode plasmas.Comment: 23 pages, 12 figure
Finite-Size Scaling in the Energy-Entropy Plane for the 2D +- J Ising Spin Glass
For square lattices with the 2D Ising spin glass with
+1 and -1 bonds is found to have a strong correlation between the energy and
the entropy of its ground states. A fit to the data gives the result that each
additional broken bond in the ground state of a particular sample of random
bonds increases the ground state degeneracy by approximately a factor of 10/3.
For (where is the fraction of negative bonds), over this range of
, the characteristic entropy defined by the energy-entropy correlation
scales with size as . Anomalous scaling is not found for the
characteristic energy, which essentially scales as . When , a
crossover to scaling of the entropy is seen near . The results
found here suggest a natural mechanism for the unusual behavior of the low
temperature specific heat of this model, and illustrate the dangers of
extrapolating from small .Comment: 9 pages, two-column format; to appear in J. Statistical Physic
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
- …
