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PREFACE

This is the final report incorporating the theory and
concluding numerical results of a research study carried out
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NAS 2-8844, titled "Study of RPV and MX System Characteristics."

Mr. Michael Tauber was the Technical Monitor for the
study, which was done for the Advanced Concepts Branch of the
Aeronautics Division, NASA-Ames Research Center. Mr. D. S.
Hague, of Aerophysics Research Corporation, served as Project

Leader for the study.
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A DIFFERENTIAL GAME SOLUTION TO THE

COPLANAR TAIL-CHASE AERIAL COMBAT PROBLEM

A. W. Merz

Aerophysics Research Corporation

1.0 SUMMARY

This report describes the applicable theory and presents

~ the numberical results obtained in a simplified version of the
one-on-one aerial combat problem. The principal purpose of the
study is the specification of the roles of pursuer and evader

as functions of the relative geometry and of the significant
physical parameters of the problem. Numerical results are
presented for a case in which the slower aircraft is more mancuver-

able than the faster aircraft.

A third-order dynamic model of the relative motion is
described, for which the state variables are relative range,
bearing and heading.:'Cértain fundamental results are derived and
discussed. An important feature of the present version of the
aerial combat model relates to the definition of the end of combat,
or "termination." The "tail-chase" end condition requirés that

the evading aircraft be directly ahead of thekpursuér, with the

relative headings nearly parallel. The maximum final relative
heading angles are arbitrary input parameters, typically equai‘

to about 30°. The ranges at termination are also arbitrary in

the present version of the problem, so the weapon systems of both
aircraft can be visualized as forward4firing high-velocity weapons,

which must be aimed at the tail-pipe of the evader.

It is found that, for the great majority of the relative
geometries, each aircraft can evade the weapon system of the other.

That is, termination in favor of either aircraft requires that the



angular heading and the angular bearing satisfy certain conditions.
Both of these angles change with time as functions of the turn
rates of both aircraft. And, though the terminal range is arbi-
trary, it is impossible for the slower, more maneuverable aircraft
or for the faster, less maneuverable aircraft to ''get on the tail"
of the other, when the initial relative heading exceeds a certain
value. This conclusion follows if the evader turns optimally at

certain critical times.

While detailed results are presented here for only one set
of numerical parameters, the following conclusions are general,

and will apply independent of the numerical parameters chosen:

1. Specification of a "capture zone" for each aircraft
is possible, by determining combinations of range,
bearing and heading for which a tail-chase win is
guaranteed regardless of the turn maneuvers chosen

by the evader.

2. Pursuit-evasion roles and associated optimal turn
maneuvers are given analytically by extremely complex
methods, but the results can be approximated 'nearly
everywhere" by simple '"rules of thumb" (e.g., turn

into him).

3. Variations in the capture region size and shape can
be determined numerically and presented graphically,
in order to study the parametric sensitivities to

speeds, maximum turnrates and terminal angles-off.

The solution to the problem as presented in this report
has required a large amount of interaction between programmer and
digital computer, and it is not presently known whether the general
numerical problem can be successfully "automated.'" Only about 30%
of various derived candidate maneuver combinations were finally

required in the solution displayed here. Of the remainder, any



number might be required for other sets of the parameters (speeds,
turin rates, etc.). Furthermore, the theory of differential games

is constantly undergoing change, as a result of applying this
theory. It is therefore expected that the desired automation will
be practical only for ''small" parametric variations, an illustrative
application of which is given in this report.



2.0  INTRODUCTION

The one-on-one aerial combat problem is the most fundamental
version of a more general important guidance and control problem.
This is because nearly all actual multi-aircraft combat engagements
end as a sequence of one-on-one engagements. That is, an evading
aircraft is eventually maneuvering with respect to just one pursuing
aircraft, and in the terminal phase‘of the encounter, both aircraft
should be following "one-on-one'" control logic. The additional
complications of the multi-aircraft encounter are important, of

‘course, but they are ignored at present.

The application of the theory of differential games(l) to the

aerial combat problem is important for the following reasons:

1. When termination is uniéuely defined, the roles of
pursuer and evader should ideally depend only on the
initial relative geometry and the performance charac-
teristics of the two aircraft. That is, in an aerial
duel which is properly flown by both pilots, neither
pilot should switch from a pursuit strategy to an

evasion strategygz)

2. The optimal maneuvers for both pursuer and evader should
also be specified by the relative geometry and the
performance capabilities of the aircraft. A choice of
maneuvers should occur only when they lead to the

same result, as measured by the performance criterion.

3. The significance of a change in aircraft performance
parameters (top speed, load factor, etc.) can be
measured with respect to its effect on aerial combat

performancq relative to a specific opponent.

4, New optimal pursuit-evasion tactics for both pilots and
RPV autopilots can be expected from the solution to the

appropriate differential game model of the problem.



With respect to the first reason given, in both simulated
and actual aerial combat engagements, the roles of the pilots may
change several times as the encounter progresses. Rational pilots
typically want to attack without being attacked, and the mix of
offensive-defensive tactics is likely to vary with time, unless the
initial geometry is a '"'set-up'" for one pilot or the other. 'When the
initial relative position and heading are such that the roles and
maneuvers are obvicus, these maneuvers are usually found to be
optimal; in the differential games sense. Examples of this type
will be discussed in the results given later. Such initial geometries
can then be gradually varied until the roles and maneuvers are no
longer obvious, and for these geometries, the theory of differential
games can be usefully applied to develop both the roles and the

associated optimal maneuvers of both aircraft.

As mentioned earlier, actual aerial combat engagements are
not usually of the one-on-one type, and it is reasonable to ask if the
solution of this simpler problem has relevance to the realistic
problem. A satisfactory and convincing answer can be given only by
using the results of the study in a simulated or actual multi-aircraft
encounter. It is possible, however, that this more complex and rea-
listic application often reduces to a sequence of one-on-one encounters,
~in which case the derived results should have some relevance. In any
case, the solution tb the simpler problem is a means of studying
performance variations, pursuit-evasion maneuvers and weapon system

characteristics, all with respect to a given enemy aircraft.



3.0 MATHEMATICAL MODELLING

The study and analysis of an aerial combat encounter
between two aircraft is an extremely difficult problem, which

can be approached in two ways: -«

1. Complex and accurate aircraft simulations can be used -
with actual or simulated pilot control inputs, to
generate experimental and statistical results as to
"effective' cesbinations of aircraft, weapon systems

and pursuit-evasion maneuvers L3101

2. Simplified models of aircraft dynamics can be éoupled
with the theory of differential games to specify the
roles as functions of the relative geometrynand the

optimal maneuvers associated with these roles.

These two methods focus on different features of the problem,
and both have advantages and shortcomings. The research effort to
date has been concentrated on the first approach and a large
amount of experimental data has been accumulated. However, it is
difficuit to drawrgehefal conclusions from the data, because of the
large number of independent input parameters. Further, the experi-
mental data may deal with a specialized feature of the problem (e.g.,
a gunsight or thrust-vector control system) without first showing how
important this aspect is to the problem solution. However, in any
case, the experimental results may be biased by the use of non-
optimal control laws. This tends to make suspect any general con-

clusions based on experiment.



On the other hand, practically all the published theoretical
differential game studies have utilized over-simplified or over-

specialized mathematical node1s [13-18]
[19,20]

or have dealt with theoretical
aspects of differential games which are irrelevant to

realistic pursuit-evasion problems.

For these reasons, it appears that detailed modelling and
subsequent analysis ¢f a portion of the aerial combat system should
be done only after it has been shown to have a major impact on the
systém outcoma; ‘This can be demonstrated only by using simplified
dynamic models which include what seem to be the fundamental

features of the system.

3.1 METHODS OF DEVELOPING TACTICS

The first approach given above has the advantage of per-
mitting practical results to be passed from experienced combat
pilots to other pilots and to aircraft designers. Unfortunately,
however, the mass of data accumulated.in this experimental .
approach discourages general quantitative conclusions, and it is
often impossible to know why a particular combat encounter (simu-
lated or othervise) ended in favor of one pilot instead of the other.
Furthermore, the method tends to be both inefficient and expensive.
partly because most of the effects being simulated are secondary
to the question'of determining which pilot should pursue and which

should evade.

The second approach, on the other hand, can be criticized
as being too highly idealized with insufficient fidelity in the
aircraft maneuver dynamics, and with too little attention given to
the transient behavior of the pilots. Neveftheless, the analysis
of reduced-order systems in the pést‘ﬁas had the effect of isolating
the significant parameters, and of permitting a more organized

development of improvements in a given system. For this reason, it
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is felt that practical low-order versions of the aerial combat
problem can be analyzed and solved, in terms of parameters which

appear to be of fundamental importance.

In 6rder to validate or to determine limits to this hypo-
thesis, it will be necessary to use results obtained from the
simplified model in a realistic simulation of the aerial combat
problem. For example, a simulated combat engagement between an
"optimally" guided RPV and a comparable aircraft flown by an ex-
perienced pilot or guided by approximate combat contrcl laws can

demonstrate the value or limitations of the second approach.

3.2 ASSUMPTIONS IN MATHEMATICAL MODEL

All engineering work is based on the analysis of more or

less idealized equations describing a certain aspect of the system

of interest. If the mathematical details of the study are dome
correctly, the success and validity of such analyses depend on how
well the actual system corresponds to the idealized system. For
example, the low-speed small-disturbance stability characteristics of
aircraft can be quite accurately determined using linearized
equatibns wfitten for a rigid aircraft. At higher dynamic pressures,
on the other hand, aeroelastic effects become significant, and-the
order and complexity of the equations describing the system increase
considerably. But such mathematical refinements in the system
equations should be undertaken only after a rather complete study

of the simpler equations. In many cases, of course, the higher-
ordered equations are never needed, because the aircraft is essentially

rigid for practical values of the dynamic pressures.



By analogy, the modelling of the one-on-one aerial combat
problem should start with the simplest realistic* dynamic equations
which can be used to describe the important féatUres of the motion.
After the pursuit-evasion tactics have been found for the simplest
mathematical model, refinements can be added to the descriptive
equations, and small changes in the results can normally be expected.
If the changes in the results are not ''small'", in the engineering
sense of the word, certain important assumptions have been violated.
In this case, either the mathematical mod2l must be modified, or
the applicability of the results must be restricted to parameters
for which such changes ggg_smallf For this reason, it is always
good practice to emphasize the assumptions and conditions under
which a solution has been found. The reader can then judge for him-

self whether these conditions are reasonable.

The velocities and maximum turn rates of the two aircraft are
assumed to be constant during the encounter, to avoid the use of
higher-ordered equations of relative motion. This is partially justi-
fied by observing that maximum normal accelerations due to lift are
usually much larger than axial accelerations due to thrust and drag,
except for very high angle of attack configurations. A second justi-
fication arises in the analogous problem of developing maritime
collision avoidance maneuvers. It is found[21’22] that ship velocities
in a hard turn can be reduced by 30% to 50% from their initial values.
Nevertheless, the optimal ship turn maneuvers are nearly insensitive
to this change in velocity, and excellent results have been obtained
by using maneuvers based on the initial velocities of the ships. of
coursé, any results are perfectlx,applicable_to turn maneuvers which
maintain the velocity (or‘energyj of the aircraft. But, if the direc-

tion of a turn maneuver can be shown to be nearly independent of the

Instantaneous changes in speed or heading require infinite accel-
erations, and are examples of the use of unrealistic dynamzc

equatlonsll3 16]



subsequent speed lbss, it is‘irrelevant that the speed is rgduced

during the turn. In other words, the fundamental purpose of the:pré-
sent study is the development of pursuit-evasion maneuvers, as functions
of the relative position and velocity, and not to simulate the transient

behavior of the aircraft during these maneuvers.

In the development of pursuit-evasion maneuvers, it will be
found useful, if not necessary, to work in terms of retrograde (''back-
ward") time. This is the time-to-go until the end of the combat
engagement, which is defined geometrically, in terms of the relative
position and heading of the two aircraft. When a suitably simplified
model of the aerial combat problem is solved in this way[2’19], it is
usually found that the chase is brief and the trajectories rather
simple. This provides retroactive justification for certain of the
assumptions necessary ﬁo the solution. That is, for example, the
entire combat time may be so short that the speeds cannot be appreciably
altered, so that they can reasonably be considered as constants. However,
this behavior may be due to the choice of vehicle parameters in the

present study.

sne important kinematic characterlst1cs of two aircraft in
combat are the vectors describing the relative position and the rela-
tive veloc1ty These two vectors define a plane in which the relative
apply their contrsl accelerations in th1s plane. This makes the
optimal use of the accelerations that each pilot has at his disposal,
and if the individual aircraft velocities are also in this plane, an
initially planar dynamics problem should remain planar. In fact,
experienced combat'pilots do attempt to orient their lift vector in
the plane of the relative position and velocity vectors. This tends
to lead to the development of an encounter lylng w1th1n a twisting

plane in three-dimensional space.

10




3.3 EQUATIONS OF RELATIVE MOTION

Under the simplifying assumptions discussed above, the rela-
tive motion is described by three equations, in which the speeds and

maximum turn rates are constant parameters. The coordinate system is
chosen to be fixed to the faster aircraft A , and in this axis

systwém the relative position (x,y) and the relative heading (H)

of the slower aircraft B satisfy the equations

.
H

= - w Y + VB sin H
y = - VA+ wa+ VB cos H (3-1)
H= - w, + wg
where the turn rates are bounded; i.e., lwil = w4 ,» 1 = A,B.

max

As shown in Figure 3‘.1, the relative motion can be expressed in
polar coordinates as well, in terms of the relative bearing (¢)),the
angle-off (@) and the range (r). The equations of relative motion

in these coordinates are:

L BE
1]

Vg cosf - Va cos ¢

-
L]

—w, + (VB sing + VA sin(f) } /r ’ (3.2)

D -
"

wg - (VB sing + VA sin¢-) /r
The two sets of coordinates are related by

x=rsind ,y=rcosdp ,H= ¢+g. - (3.3)

11



The differential,equations of motion in Eq.(3.1) are seen to

be linear, whenever , and wp are constant, with solutions in

terms of trigonometricAfunctions. This is because the aircraft are
then describing simple circular arc paths in fixed coordinates.

The equations are solved by first determining the heading as a
linear function of time, and by then solving the position
equations by standard methods. The more symmetrical polar
equations in (3.2), however, can be solved only in terms of arc
tangent functions. These equations show how the angles ¢ and @
depend upon both the aircraft turn rates and the kinematics of

the problem. When the range is large, d>‘§ -, and 0 = wp »
but otherwise, highly nonlinear effects can predominate. Thug.

at large ranges A can control the bearing, but B can con-

trol the:ahgle—dff! Since the bearing and angle-off of A
relative to B.are m - 6 and T - ¢, respectively, this geometric
symmetry means that aircraft at an initially large distance from
each other will often null the steering errors and turn the initial
encounter into a head-on pass with little lateral offset. However,

short-range maneuvers are far more complex.

Figﬁre 3.1 Relative Motion Coordinates

. 12



; The solutions to Eq.(3.1) are given here in terms of the
final (terminal) conditions (xf, Yer Hf). For constant values
of the two turn rates, both aircraft describe circular arcs in
real space, and B's position relative to A is given by the
following functions of the retrograde time, 7:

X = X, cost + mA(l - cosT + yf sinTt) + VB/“’B [cos(Hf ””A") - cos H]
y=ygcosr + (1- W, Xg) sinrt - 'VB/wB [sin(Hf *w, 7) - sin H]

H:Hf‘*(wA‘mB)T’lwil Swi pi=A,B (3.4)
max

Here, the velocity of the faster aircraft has been normal-
ized to V, = 1, and the maximum turn rate of this aircraft is

A :
normalized to Wy =-1. This means that the unit of distance

max
in the normalized equations is the turn radius of aircraft A.

For brevity, the maximum turn rate of the slower aircraft is

w?ritten as wp = @ , which will be assumed greater than 1, -

i max
while B's velocity is VB < 1. The slower aircraft (B) is there-

fore assumed to be more maneuverable than the faster aircraft (A).
This will be the case, for example, if the turns are made at the
same load factor, so that the product of speed and maximum turn

rate is constant for both aircraft.

13



4.0 PURSUIT-EVASION MANEUVER DETERMINATION

The equations of coplanar relative motion derived in the
previous section provide a dynamic model of the aerial combat
problem, in terms of a small number of parameters and dynamic
variables. . From the pointS of view of the aircraft pilots, the
solution to the combat problem should give the roles -and the
maneuvers of both pilots as functions of the relative geometry.
This is also the point of view taken here where, however, it is
necessary to iﬁvestigate the more éubtle dependence of the
optimal maneuvers on the aircraft velocities and maximum turn
rates, which obviously lead to time variations in the relative

geometry.

The method of solution to the role-determination problem
is based on the concept of the "barrier"(l). This is = surface
in the state space on which optimal trajectories occur which
correspond to the "near-miss" or "simultaneous kill" trajectories‘
in real space. The simplest interpretation to be given to the
barriér is the following: If the &vader is located slightly
"outside" the 1ocai bérrier, he can maneuver so as to avoid the
pursuer indefinitely. On the other had, if he is just inside
the barrier, and the pursuer maneuvers optimally, no escape by the

~ evader is possible.

By letting both A and B take the role of pursuer, two
barriérs are fodnd, both of which can be shown in axes fixed to A.
Ih the simplest case, these barriers do not intersect andfthéy
bound two separate regions of the state space. Even if they
intersect, other considerations show that two regions in the state
spéce exist, which are those relative positions corresponding to

the following outcomes:

1. A wins if A maneuvers optimaliy, regardless of

st'maneuvers.

2. B wins if B maneuvers optimally, regardless of

A's maneuvers.

14



A third region may also exist, which is '"outside" both of
these two regions, in which both A and B can evade the other

indefinitely, regardless of the maneuvers used by the pursuer.
4.1 TERMINAL CONDITIONS

Termination‘in an aerial combat encounter can be defined
in many different ways, ail of which mean that the differential game
has ended. A conflict exists, however, between the complex limi-
tations of current air-to-air weapon systems and the requirements
of relative simplicity in the mathematical models of these systems.
The terminal conditions are actually functions of many independent
physical quantities, but for the purposes of this report, they must
be defined in much simpler terms, in order to lgad to a problem

definition which is both practical and soluble.

In the present report, attertion is focused on the tail-chase
or heading#limiied end condition, in which the~evader (A or B) is
directly ahead of the pursuer, with a "near-paraliel" heading. These
terminal configurations are shown in Figure 4.1 for both A and B
pursuing the other. The relative te¢rminal heading or "angle-off"
is méasured clockwise from A's velocity to B's velocity, and this
angle must be smaller in magnitude than HA or HB (depending on the

roles).

The angular parameters H, and HB’ are expected to have values
of approximatély 10°-30°. These would actually depend on the details
of the gun-sight or missile guidance system.used by the aircraft.

The range atitg;mination‘can also be an important factor in the
realistic modéliing of the aerial combat problem, but in the present
application, the final range is considered as irrelevant;' This is
consistent with the assumption that the forwafa—firing weapons of
both aircraft have "long-range' guidance systems which can follow
any subsequent eﬁasive maneuvers of the target. A more detailed
modei of the problem would also include the final angular béarihg

as a parameter; instead of requiring that the evader be exactly

15



AT
a) A pursues, B evades b) B pursues, A evades
xf=0 : xf=yftaan
LAEER RN

Figure 4.1 Heading-Limited Terminal Conditions

in A's Axis System
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ahead of the pursuer at the end of the chase. In this ct , too,
it is felt that sufficient complexity already exists in the problem
statement and that any generalization of this kind can be postponed
for the present. It might alsc be suggested that:both the terminal
bearing and the terminal bearing :ggg_be zero, to allow for target
tracking requirements. This generalization obviously has practical
importance, but it also must await the solution to the present

simpler problem.
4.2 CPTIMIZATION CRITERIA AND NECESSARY CONDITIONS

The‘principal reéults being sought in this analysis are the
sets of initial conditions for which a win is guaranteed for the
pursuer, regardless of the maneuvers used by the evader. The pur-
suer, of course, can be either aircraft A or B, and it is ex-
pected that the "capture regions'" of A and B will intersect on
those surfaces which separate the two regions. That is, the
state space, as described by the vector (x, ¥, H), will be composed
of at most three regions, corresponding to wins by A or B, and
to a "stand-off" or escape by the faster aircraft. For other values
of the parameters (e.g., if the faster aircraft iS also more maneuver-
able) thg third or "“'escape' region may be absent, and one or the

other aircraft must win for all initial conditions.

The capture region of either aircraft is determined by a

(1]

family of trajectories forms a "semi-permeable surface', which

consideration of the family of 'barrier" trajectories. This
prevents the state from crossing the surface as long as both air-
craft maneuver optimally in its neighborhood. Along the paths

on this surface, the pursuit-evasion roles are known, and the

trajectories end in a "near-miss" or simultaneous kill configuration.

17



(For the weapon models used here, a simultaneous kill is actually
a collision with near-parallel headings.) The reasoning is that

a émall displacement normal to the barrier means a clear win or a
clear escape by the pursuer or evader, respectively. Therefore,
the pursuer’'s semi-permeable surface locally divides the state
space into capture and escape regions, for the assumed roles.

But, a different set of barrier trajectories exists for the
reversed-role assumption and when the two barriers intersect, one
or the other must be discontinued. An exception occurs on the
"collision'" barrier, which is itself a role-reversal locus. These

notions are illustrated in Figure 4.2.

near-miss
barrier

, collision barrier
A pursues B :
and wins

near-miss
barrier

Draw
(A escapes B)

B pursues A
and wins

Figure 4.2 <Conceptual Division of State Space

The pursuit-evasion game can be given a positive value if
B wins, and a negative value if A wins, where '"winning" is de-
Jined for A and B by a terminal configuration in favor of
either, as shown in Figure 4.1. The value of the game

for trajectories -following the barrier is therefore zero, and this

18



value function has a total time derivative along the optimal
trajectories which is also zero. This is the 'Main Equation"

of Isaacs“], which takes the following form,

min max[Axi+Ay)'r+AHl"l] =0
wy “p

Substituting from Eq.(3.1) with Vo= 1,

min max [Ax('- @, Y+ VB sin H).
Wy ¢

4.1)

+ Ay(-l tw, X + Vg cos H)

A

+ )‘H(' O)A *wB)] =0

4.2.1 ADJOINT EQUATIONS AND OPTIMAL MANEUVERS

The adjoint vector, VA= (Ax, As AH) consists of partial

b4
derivatives of the payoff function, for which a saddle-point solution
is sought. These variables obey a set of linear differential equa-
tions, which are found by differentiating Eq.(4.1) with respect to

time:

.j = - : 4.;2
Ay Wa Ay (4.2)
AH' VB (;\y sin H - Ay cos H)

19



When A is turning hard right or left, w, = : 1, and the retrograde

A
solutions to these equations are expressed in terms of the final

values of the adjoints and the time-to-go, T:

A= A COST + A sinw, T
xf yf A

Ay‘ = - Axf smwA1'~+ Ayf cosT (4.3)

)«H = AHf + VB/‘"B [)‘xf(Sin He - sm(Hf- wBT))

+A_ (cos H
y

) g - cos (H f-wB"r) )]

It will be shown that the terminal values of the adjoints are

derivable from the geometric conditions at the final time, when

T = 0.

The optimization procedure implied in Eq.(4.1) gives the
turn-rate controls of both pilots as functions of the current

values of the state and adjoint variables;

W, = W, sgnSA=s.gnSA

A max
Sp = AgY T Ay Xt Ay
and wp = @ sgn SB = @ sgn SB v
nax (4.4)
SB = Ay

where the switch functions of A and B are denoted SA and SB
respectively.
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The optimal maneuvers for both aircraft are therefore hard
turmns to left or right unless the switch function is identically
zero. In this case, it can be shown that the corresponding
cptimal maneuver is a 'dash" or straight path, for which the turn
rate is zero. Thus, regardless of the relative geometry or per-
formance characteristics of the aircraft, only nine maneuver pairs
(3 maneuvers for each of 2 aircraft) are candidates for optimal con-
trols in this model of the aerial combat problem.

4.2.2 END CONDITIONS

The optimal maneuvers can be computed only when the switch
functions are known, which reduires that the adjoints be known.
Boundary conditions on the adjoints, however, are known only at
the time of termination, when(the geometry corresponds to the
"near-miss' or 'collision'" end condition. Further analysis
therefore requires consideration of the relative motion which

precedes the barrier end conditions.

The barrier trajectories which precede these end conditions

are of two general types:

1. "Near miss" trajectories for which the evader contacts
tangehtialiy the edge of the pursuer's capture region,
2. "Collision' trajectories, for which 'wins' occur

simultaneously for both aircraft.
These trajectories are representative solutions to the game of

kind[ll, which separate 'capture' from "escape", and which are
illustrated for the tail-chase end condition in reference 23.
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Parameters HA and HB were defined in Figure 4.1, and
are shown in a perspective drawing of the two capture regions
in Figure 4.3. These relative heading angles in the tail-
chase end condition bound a two-dimensional region in the
relative space on which capture must occur, and it is seen
that the near-miss trajéctories contact the capture regions
either along the edges or tangentially along the surfaces.
The collision trajectories occur at x = y = 0, along a line

segment which is common to both capture regions.

Trajectories in this 3-space (x, y, H) are continuous
curved paths obeying the equations of relative motion. That
is, the relative 'velocity'" has components i, &, and ﬁ, and
the trajectories are smooth except where A or B switches
turn directions.

o+— A captures B (xf = 0, yf>0)

L T1

A nearly
wins /

X

collision (xf =Ye= 0)

B captures A _
(xf =Yg tan Hf, y‘f“< 0)

B'nearly
wins

Figure 4.3 Terminal Trajectories on the Barrier |
‘ for the Tail Chase End Condition
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Depending on the relative orientation and turn maneuvers
of the aircraft, 16 different terminal configurations are possible in
this model of the problem, of which three are discussed in detail in
reference 23. The other cases are listed in Table I, where it is seen
that more stringent inequalities can occur in the applicable range of the
independent variable. These inequalities can be derived by the
requirement that neither switch function changes sign while the
heading changes (retrogressively) from Hf to H. Further dis-

cussion of these maneuvers is postponed to Section §5.0.

4.2.3 SWITCH CONDITIONS

The retrograde integration of the state and adjoint equations
allows the switéh functions of both A and B to be written in
terms of the terminal values of state and adjoint vectors, and
the associated turn rates w, and wg- In these exp;essioné, the
independent variable is the "time-to-go'" until the near miss or
collision occurs. It is denoted by the symbol 7 = tf -t,

where t. is the time at which the near miss or collision occurs.

f

By combining the results presented in Eqs. (3.4) and (4.3),
the switch functions for aircraft A and B can be expressed in

retrograde time as

S, = A, (yg * sin T) - xyf [xf - w, (1 - cos7)] + *Hf

A

A Xg
| v (4.7)
B . .
Sg =Xy +=— [ A, (sin Hg -sin(Hg- wpT))+ )\y (cosH-cos (He- uBr))]
f B f f v :
where w, = sgn SA==§1‘ and wp = w sgn SB'-'*“',"

25



TABLE I
OPTIMAL PURSUIT-EVASION TERMINAL MANEUVERS

(Heading-Limited End Condition)

Terminal State

Terminal Adjoint

Case| Turns
(x ’ y ’ H ) (A » A 1 A )
£ 7f °f xe” Tye Hf
1 ARBR (o, 0, .Hf), (sin3, cosf3, 0)
~cos™ v SH <0 can g = 1-Vgcos He
VBsm Hf
2 ARBL (0, O, Hf) (sin8, cosf , 0)
-1 1-V_ cos H
-H.<H.<- ‘
HB_H,f__ cos VB tang = B f
VBsm Hf
3 ,ARBR (o, VBsin Hf, Hf) (x, 0, 0)
< -
O-HferA‘
4 | AgBp (0, yge Hy) (cosB3, 0, sinB)
V_sin H_-y
B A7f
0syesy,” et T,
-w
. -V_sin H, +y
<
VBsm HA..yf tang = B Af
. . =1 + W
;5 ALBR (o, Yf: HA) (COS[_‘}, 0»‘ SinB)
o Yo+ V,sin H
ok £ B A
6 ALBL (0, o0, Hf) (sin@, cosf3, O)
: -1+ V _cos H
, B f
-1 tang= - :
0<Hes cos Vg ~Vosin H,
R B f
7 ’ALBR (o, . 0, Hf) | (smﬁ » cos@3, 0)
o -1 + V_cos H
cos V< H_<H tang = B £
B £~ B V.si
-Vgsin Hf
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Table I

(continued)

Terminal State

Terminal Adjoint

Case | Turns
o (Xes ¥Yer HE) (A, s Ay, s Ay )
£2 /£ °°f xe' Ty Hf
8 AB (0, v sin He, Hg) (-1, 0, 0)
-H < HfSO
9 ALBL (o, Ygr -HA) (cosB, 0, sing)
VBsin HA - Ve
Ogyfg tanf8 =
-1 +w
: V sin H, +y
. B A'f
y.2V_sin H tan =
£2 %10 p B | o
100 ‘ARBL (0, Ygs -HA) (cosB, 0, sing)
, -y -V,.sin H
Yf?- },2** tan g = f B A
| 1 +w
. 2 . ) ' . .
“11 BLAL (-sin Hf/w,-sm chos Hf/w,Hf) (-cos Hf,§1n Hf,-sm Hf/,w)
<
0< Hf_ HB
12 BLAI; (yftan HB’ Yer HB) (cosﬁcosHB, -cosﬁsmHB, vsmﬁ) |
5 -sin HB-yf/cos HB
-sin Hpcos Hp/w <y <0 tan g =
. ~w+ 1
sin HB + yf/cos HB
Y¢ < -sin HBcos HB tang = -
. ( w-1
13 BRAL’ ‘(yftan HB’ yf, B) (cosﬁcosHB, -cosﬁsinHB, sinf)
< -sin H,cos H tang = -Sln HB-yf/COS HB
Yes pc0s Hp B |
w+ 1
14 BRAR (sinZHf/w,sin Hecos ,Hf/w,Hf) : (QQS He, -sin He, -sin Hf/w)

25



. Table 1

(continued)
‘Case | Turns Terminal State Terminal Adjoint
(xf’ Yf: Hf) ' ’ ()\x ’ )\y ’ AH )
f f f
15 BRAR (-yf tan H, Y gs -HB) (cosB cosHg, cosg sinHg,-sing)
' Coy o -sinHB - yf/cosHB
~-sin HBcos HB/wgny.O tang = o1
B sinHB + yf/COSHB
Yeo<-sin H,cos H tang =
f B B
. -w+ 1.
16 | :BLARE (-yf tan HB’ Ygr -ﬂB) (cosp cosHB, cosf sinHB,-sinB)
-sinH_ - y o/ cosH,
yfﬁ-sin HBcos HB , tanB= B £ B
- @ - 1
* 1. ) i HA-H
Y1 = a[VB sin HA - (w -l)sm( w—l)]
e 1 . R X (HA-H)
Yy = a[vB sin HA - (w +1)sm,w+1 1

Foxl'f’ specific terminal ranges, singular arcs for both A and

B can precede the maneuvers given in cases 12 and 15,
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Singular arcs cannot occur just prior to termination, because
this would imply

or (4.8)

SB')‘H? B=\r'B()\xcosH- xysmH)sO

and neither of these conditions can hold at tf. This would mean
that all adjoints are zero. Such a situation can arise only if
the outcome, as measured by the performance‘criterion, is independent
of the state and its rate of change. This degenerate case is excluded

from the mathematical model being used for. the aerial combat problem.

Because the backwards trajectories are most easily parame-
trized at specified (constant) values of heading, H, the solution

to the heading equation (using the appropriate controls) is found
as :

HeHo v (0, - wp)7 (4.9)

This expression gives the time-to-go, 7, when H and H_ are

‘ f
known, and therefore both switch functions can be calculated to

assure that neither has changed sign during the retrograde trajec-
tory of interest. B

A More generally, when both state and adjoints are known at tf,
the times (if any) at which SA and SB equg} zero can be derived in
terms of trigonometric arc-functions. For example, the representa-
tive case 12 from Table I can be chosen (because the less maneuverable
aircraft never switches while pursuing),and for Ye<- sin HB cos HB’

with both A and B turning left, the switch functions are
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S, = w(sin HB + ys/ cos HB) - (w-1) sin (HB -7) .

A
(4.10)

s w-ly _.
S = sin HB + yf/cos H, + VB (———u ) sinwT

B B

When equated to zero, these can be solved for the retrograde-switch

times,

<
U}

[ -w(sin H, + y_/cos Hy)
H+sin1[ B £ B]

A B w-1

(4.11)

~3
L]

' -w(sin H, + y_./cos H,))
1 sin-l[ B* Vs B ]
VB (w-1)

Since the independent variable here is Ygr it follows that
no switch occurs if the argumeat of the arcsin function exceeds 1 in

magnitude; i.e., neither switches if the terminal range is large enough.
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4.2.4 GAP CLOSURE CONDITION

A detail of the solution which is not reported in Ref. 23
relates to the closing of an "angular gap'. This gap turns out
to,be‘of great importance in the development of a complete solution
to the prsblem of role-determination. Furthermore, other details
of the solution, as reported in Sec. 4.2.4 to 4.2.6 of Ref. 23,
appear to be unnecessary for the aircraft parameters which have
been chosen., Consequently, this final report emphasizes the sig-
nificance of the gap closure condition by describing how it is
obtained.

At the corner of a capturé tegion; trajectories can arrive
from at least two different directions, as shown schematically in
Fig. 4.4. This illustrates the qualitative situation which holds

at the point, X = (o, 0, HA). It is seen that the maneuvers ARBR
(Case 4) have Yg¢ @ a parameter, while the maneuvers ALBL (Case 6)

have Hf as a parameter. It is also seen that the paths which arrive
at the final point from opposite sides must be connected by a surface

wiich is generated by two-part paths.

Y-

Fig. 4.4 - Geometry of Gap.at (0, 0,_HA)
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The terminal adjoints in case 4 are (Ax , 0’)%1)’ where
£ f

A, >0, while in case 6, they are (A_ , A , 0), where A <0.
He - X Y Ye

To close the gap with optimal trajectories, a parameter p will
be varied in the range 0 to 1, such that the terminal adjoint

is expressible as

_}lf = (a, -p, 1-p)

Now, an examination of the retrograde heading variation in Fig.
4.5 shows that the trajectory can have 0, 1, or 2 switches as
the heading varies from H to HA’ depending both upon the heading
H gnd the values of the switch times T and T3 Expressions

are required for these switch times, and for this purpose, the
Hamiltonian is written at termination for the maneuvers ARBR,
which is equivalent to the following equation for a(p):

a Vy sH, = p(-1 + vy cH,) - (1-p) (w- 1)

- The retrograde switch times for A and B are then found by solving

Fig. 4.5 Heading Variations with Retrograde Time
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the corresponding switch function equations, which are

SA(7k) asT, + pcT, + 1 - 2p =0

and , |
Sg(7p) = 1 - p + (Vp/w) [a(shy-s(H,-wT))
= plcH,-c(H,-wR))] = 0
After some effort, the switch times are then expressed as
2 2 2 35
or o ca@-2p) vpla®+ p? - (1-2p)]
A 2 2
a® +p
AC + B[a2‘+4p2 _ C:J%
SWT, =
B 2 2
a +p
where
A= psHA + acHA
B = chA - asHA
C = asH, - pcH, + w(1-p)/Vy

These rather ungainly equations have been applied for only
one set of parameters, for which it was found that TA<:7.’ and
for which only the first (retrograde) intersection shown in Fig.
4.5 was significant. General ‘conclusions as to the conditions
under which these equations are applicable are therefore not
available. For the numerical parameters illustrated in Fig. 5.1,
however, the barrier segments of interest are those labelled

~ ApB, and A B, at the relative headings H = 0°, 10°, 20° and 25°.
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5.0  NUMERICAL EXAMPLE OF ROLE-DETERMINATION

The concepts and equations of the earlier portions of this
report have been applied to a specific set of aircraft parameters,
and capture regions for both aircraft have been found. The
numerical values of the parameters chosen for this example are:

vV, = 1.0, w, = 1.0, H = 30°
max

(o]

V. = .S’ w 1.1, H, = 40

B
max
and the slower aircraft B 1is seen to be slightly more maneuverable
than aircraft A. Also, it may be noted that A's weapon system
requires the terminal headings to be more nearly parallel, since
HA<;HB'

turn radius of aircraft A (VA/w

In the results to be discussed, the unit of distance is the
A), In these units, which might
correspond to a physical distance of a mile or more, B's minimum turn

radius is considerably smaller, VB/wB = ,4545.

The capture boundary results are shown graphically in Figure 5.1,

and the following details are noteworthy:

1. A total of 14 different maneuver combinations are required
to define the barriers, which include several 2-part

maneuvers. These correspond to cases
1, 4a, 5, 6, 9a, 10, 12, 12b, 12ab, 13, 15b, 15ab, 16 and
16a, '

where "a'" and '"b" are used to indicate retrograde switches
by A or B, respectively. That is, e.g., Case 12 corresponds
to BLAL’(Table I), Case 12b to B, A , and Case 12ab to

PRy
BriApe-
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2. A can win only if H<HA = 300, since wA<wB. That is, if
the heading is initially greater than H,, B can prevent
its subsequent reduction to this value, regardless of A's

turns.

3. For the great majority of relative positions both A and
B can evade the other indefinitely. This is because B
cannot control both the heading and the bearing at all
ranges. That is, when the range is large enough, A's
speed allows him to control the bearing, as implied by

equation (3.2).

4. The optimal turn maneuvers can often, but not always, be
expressed as ''turn toward him", whether pursuing or evading.
For example, when H = OO, each initially turns toward the
other except (i) when A and B are nearly side by side;
here A initially turns away from B, and (ii) when the
barrier is a collision trajectory, for which B turns
away from A. Other exceptions occur at other relative

headings.

5. Single-stage near-miss maneuver loci are always straight

lines.

‘The terminal maneuvers BRAL (case 13) have zero time-duration
when H =‘40°, and this locus for H>40° is extended by the barrier
corresponding to the maneuvers BLAL (case 12). Both of these straight

loci are extended by the curved locus corresponding to BRLAL'

The results shown in Figure 5.1 together with their antisymmetric
counterparts (for H<0°) define two closed ''volumes' in the three-
dimensional relative state space. These volumes are of semi-infinite
extent for H<45° only because the ranges of the weapons have been
assumed infinite. As shown in Figure 5.1(a) at H = 0°, for example,

“the region far ahead of A should be bounded at some finite iange
comparable to A's effective weapon range, depending on the time

required for B to increase the relative heading to Hy. Similarly,

33



DRAW DRAW
N L
-1 1
\
"
DRAW

DRAW

34

(o]



A

DRAW

LR"R

BotPer Ay

w
>

LRR

BAr

DRAW

FIGURE 5.1(b). CAPTURE REGIONS, H = 10°

*35



ABg

DRAN

BaiArL

FIGURE 5.1(c). CAPTURE REGIONS, H = 20°

36



DRAW

B WINS ‘ DRAW

" . FIGURE 5.1(d). CAPTURE REGIONS, H = 25

37



-1

DRAW DRAW

LRALR

BRLARL

B WINS

. FIGURE 5.1(e). CAPTURE REGIONS;H = 30

38

" DRAW

(o,

-t



DRAW
B WINS

BLAR

- -1

FIGURE 5.1(f). CAPTURE REGIONS, H = 40°

39



DRAW

DRAW

FIGURE 5.1(g). CAPTURE REGIONS, H = 42°

40



1

DRAW
y
p 1 LRALR
BRLARL
? 3
-1 \ X
BwWINS | .
BrifL Bl AR
BAL B Ay
DRAN
=

FIGURE 5.1(h). CAPTURE REGIONS, H = 45

41

0



DRAW

y
| Bitrr
§
-1 X
B WINS
BiAL
BiAR
DRAW
.1

FIGURE 5.1(i). CAPTURE REGIONS, H = 50°

42



1
DRAW

y

. BiAR
BRL"‘RLw ‘
B A
\ 1AL
-1
DRAW
=1

43

FIGURE 5.1(j). 'CAPTURE REGIONS, H = 55

(o]



the region far behind A should be bounded, since A can readily
increase the relative range, when the initial range is greater than

B's effective weapon range.

For the speeds and turn rates which have been chosen,

. rd
neither aircraft encounters a singular arc[ZJ’ p 32

, and ﬁeither
aircraft switches more than once. The parametric conditions under
which these phenomena do occur therefore remain as an open question,
the answer to which could require a considerable extension of the
present results. Presumably, extremely high relative turn rates
would increase the proportion of the time spent in straight flight.
Because the combat model termination condition requires that each
pursuer control both the relative position and the relative heading,
using only one control input (the turn rate), it is fairly obvious
that the draw condition should be the most frequent outcome. It is
also evident that speed is often a disadvantage, for both pursuer and
evader, and that sharp turns are the only means available for "reducing"

the speed in a given direction.

_ Each point shown on these barrier plots is a possible ini-
tial condition associated with & specific optimal pursuit-evasion
trajectory pair and a specific end conditioﬁ; The real-space trajec-
tories are given by the associated parameter values, as computed for
the barrier. For example, the maneuvers associated with a barrier

T T and T are com-
A’ B

puted and printed as output values, implementing the analytical results

201nt Xgs Yor Ho mlg?t be>BRLARL’ for which

described in earlier pzges of this report. These figures imply that

A turns right from the initial state (0, 0, 0) until the time t = T - Tps

while B turns right from the initial state (x_, ¥, Ho) until the time
t= T -7, The paths can then be drawn in rexzl space over the re-

maining time, after which the relative state must correspond to the end
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conditicn which had been assumed in deriving the maneuvers BRLARL'

A typical trajectory pair of this type is chosen to correspond to
the' point labelled "pl" in Fig. 5.1(h). The associated computer

output is
x = -.545 T, = 1.206 Xg = -.442
y = .347 Tg = 1:213 Ye = -.526
H = 45° T=1.698 Hf = 40°

The real space paths are as shown in Fig. 5.2, which can
be drawn using the first 6 of these numbers, together with the turn

Initial Condition
From Fig. 5.1(h)

Fig. 5.2 Representative Barrier Maneuvers in Real Space
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radii, RA =1, RB = ,4545. Notice that the end conditions show

!
A ahead of B at the relative heading Hg = 40°, as required, and
that the entire trajectory in relative space occurs on the closed

contour corresponding to B's barrier.

Another interesting set of real-space maneuvers can be
drawn from a "dispersal point", as shown for the heading H = 50°
in Fig. 5.3. The initial condition is chosen at the point "pz" in

Fig. 5.1(i). Here, the evading vehicle A must immediately choose

HB'
Af t=1.768
t=1.768 T Bf |

"/
502 7
A~
_Bo(' .543
A
(o]
3) Bipfr P} BpiArL

Fig. 5.3 Dispersal Point Maneuvers in Real Space

46



between ALR and ARL’ and B's maneuvers will depend on this choice.

By so turning, A can keep the final angle-off at 40° or more, depending
only upon whether B pursues optimally.

The performance oficombat aircraft can be quantitatively mea-
sured in terms of the pursuer's optimal capture regions as found with
respect to an optimally flown controlled evader. The capture regions
of both A and B must depend upon all ofytﬂe parameters, and the sensi-
tivity to variations in these parameters can be found by making small
changes in them, and by then recomputing the kill—regions‘with the new
values of the parameters. A typical example of such a study is given
in Fig. 5.4, which shows B's capture region dependence on the angle-
off, Hg. The capture-region contours do not intersect each othey, since

increases in HB can only increase B's capture region. On the other hand,

-1

Fig. 5.4 Cépture Region Dependence on HB:(H = 50°)
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for example, increases in Vg could either increase or decrease B's
capture region, depending upon the relative position and heading.

A variational study of all six independent parameters (V,, VB’ Wp s

‘ . 1 max

wg HA' HB) in the tail-chase version of the aerial combat problem
max ‘

has not been attempted, and could obviously involve. a considerable

computational effort.
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6.0 CONCLUSIONS

.

’

The present differential-game version of the aerial combat
problem brings together the six most important vehicle performance

parameters (VA’ VB"”A » Wy , HA’ HB) and the two most important
max max '

pilot controls GuA,cuB) as functions of the three most important geo-

metric state variables (x, y, H. It is obvious that all of these
eleven quantities shoﬁld have some relevance both to the roles and to
the maneuvers of both aircraft, and that only rather complex models
of this type can be expected to provide meaningful results of general
utility.

Designers and pilots of a particular combat aircraft are
naturally interested in knowing the regions of the flight envelope in
which this aircraft '"is better than' a certain enemy aircraft. Since
the outcome of an aerjal combat encounter obviously depends not only
upon the performance éapabithies of both aircraft but also upon the
weapon system characteristics, the initial conditions of the encounter
and'the maneuvers chdgenrby both pilots, the question can be answered
only when all of these variables are specifiéd. That is, for example,
all aircraft must fly defensively from Egmg_telative initial conditions,
and realistically, these initial geometries are subject to controlled
change only when both vehicles apply finite accelerations to their

trajectories.

General‘compafétive statements_conceining two combat aircraft
are possible only when the important parameters are known for both of
them at a number of flight conditions QMééh'number and altitude). At
each of these flight conditions, the capture regions of both aircraft
can be found, and typically one will be larger (in terms of range, bear-

ing and heading) than the other. Even when the aircraft and the capture
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regions are identical, of course, the vehicle or pilot with knowledge
of the optimal offensive-defensive maneuvers will have a considerable

advantage over the other, whether his role is that of pursuer or evader.

It is suspected that the most useful results obtainable from
a study of the present type relate to the defensive maneuvers of the

aircraft, for the following reasons.

Since each aircraft in a one-on-one encounter has a bounded
capture region, and since all aerial combat encounters begin with neither
aircraft in the capture region of the other, optimal defensive maneuvers
by either aircraft can always prevent the other from obtaining an ad-
vantageous relative position. For this interpretation of aerial combat,
it appears that kills can cwgur only when:

i) One vehicle pilot (A) is unaware that the other (B) is

nearby, or

ii) Both pilots are aware of the other; but at some point,
one of them (A) maneuvers incorrectly, allowing the
other (B) to enter the region "B Wins' as shown in Fig.
5.1, from which there can be no escape unless B subse-

quently maneuvers incorrectly.
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