7,336 research outputs found

    Signatures of few-body resonances in finite volume

    Get PDF
    We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra. Using a plane-wave-based discrete variable representation to conveniently implement periodic boundary conditions, we establish that avoided level crossings occur in the spectra of up to four particles and can be linked to the existence of multi-body resonances. To benchmark our method we use two-body calculations, where resonance properties can be determined with other methods, as well as a three-boson model interaction known to generate a three-boson resonance state. Finding good agreement for these cases, we then predict three-body and four-body resonances for models using a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio

    Kondo Correlations and the Fano Effect in Closed AB-Interferometers

    Full text link
    We study the Fano-Kondo effect in a closed Aharonov-Bohm (AB) interferometer which contains a single-level quantum dot and predict a frequency doubling of the AB oscillations as a signature of Kondo-correlated states. Using Keldysh formalism, Friedel sum rule and Numerical Renormalization Group, we calculate the exact zero-temperature linear conductance GG as a function of AB phase ϕ\phi and level position ϵ\epsilon. In the unitary limit, G(ϕ)G(\phi) reaches its maximum 2e2/h2e^2/h at ϕ=π/2\phi=\pi/2. We find a Fano-suppressed Kondo plateau for G(ϵ)G(\epsilon) similar to recent experiments.Comment: 4 pages, 4 eps figure

    Entropy of solid He4: the possible role of a dislocation glass

    Full text link
    Solid He4 is viewed as a nearly perfect Debye solid. Yet, recent calorimetry indicates that its low-temperature specific heat has both cubic and linear contributions. These features appear in the same temperature range (T200T \sim 200 mK) where measurements of the torsional oscillator period suggest a supersolid transition. We analyze the specific heat to compare the measured with the estimated entropy for a proposed supersolid transition with 1% superfluid fraction. We find that the experimental entropy is substantially less than the calculated entropy. We suggest that the low-temperature linear term in the specific heat is due to a glassy state that develops at low temperatures and is caused by a distribution of tunneling systems in the crystal. It is proposed that small scale dislocation loops produce those tunneling systems. We argue that the reported mass decoupling is consistent with an increase in the oscillator frequency as expected for a glass-like transition.Comment: 4 pages latex file with 4 eps figure file

    Aharonov-Bohm Interferometry with Interacting Quantum Dots: Spin Configurations, Asymmetric Interference Patterns, Bias-Voltage-Induced Aharonov-Bohm Oscillations, and Symmetries of Transport Coefficients

    Full text link
    We study electron transport through multiply-connected mesoscopic geometries containing interacting quantum dots. Our formulation covers both equilibrium and non-equilibrium physics. We discuss the relation of coherent transport channels through the quantum dot to flux-sensitive Aharonov-Bohm oscillations in the total conductance of the device. Contributions to transport in first and second order in the intrinsic line width of the dot levels are addressed in detail. We predict an interaction-induced asymmetry in the amplitude of the interference signal around resonance peaks as a consequence of incoherence associated with spin-flip processes. This asymmetry can be used to probe the total spin of the quantum dot. Such a probe requires less stringent experimental conditions than the Kondo effect, which provides the same information. We show that first-order contributions can be partially or even fully coherent. This contrasts with the sequential-tunneling picture, which describes first-order transport as a sequence of incoherent tunneling processes. We predict bias-voltage induced Aharonov-Bohm oscillations of physical quantities which are independent of flux in the linear-response regime. Going beyond the Onsager relations we analyze the relations between the space symmetry group of the setup and the flux-dependent non-linear conductance.Comment: 22 pages, 11 figure

    A large-deviations approach to gelation

    Get PDF
    A large-deviations principle (LDP) is derived for the state at fixed time, of the multiplicative coalescent in the large particle number limit. The rate function is explicit and describes each of the three parts of the state: microscopic, mesoscopic and macroscopic. In particular, it clearly captures the well known gelation phase transition given by the formation of a particle containing a positive fraction of the system mass. Via a standard map of the multiplicative coalescent onto a time-dependent version of the Erdős-Rényi random graph, our results can also be rephrased as an LDP for the component sizes in that graph. The proofs rely on estimates and asymptotics for the probability that smaller Erdős-Rényi graphs are connected

    Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors

    Get PDF
    We report on a comprehensive combined experimental and theoretical study of Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad agreement between theoretical expectations and measured data allows us to conclude that T_c in high-quality metallic samples increases linearly with the number of uncompensated local moments on Mn_Ga acceptors, with no sign of saturation. Room temperature ferromagnetism is expected for a 10% concentration of these local moments. Our magnetotransport and magnetization data are consistnent with the picture in which Mn impurities incorporated during growth at interstitial Mn_I positions act as double-donors and compensate neighboring Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I antiferromagnetic coupling. These defects can be efficiently removed by post-growth annealing. Our analysis suggests that there is no fundamental obstacle to substitutional Mn_Ga doping in high-quality materials beyond our current maximum level of 6.2%, although this achievement will require further advances in growth condition control. Modest charge compensation does not limit the maximum Curie temperature possible in ferromagnetic semiconductors based on (Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Spin Hall Effect

    Get PDF
    The intrinsic spin Hall effect in semiconductors has developed to a remarkably lively and rapidly growing branch of research in the field of semiconductor spintronics. In this article we give a pedagogical overview on both theoretical and experimental accomplishments and challenges. Emphasis is put on the the description of the intrinsic mechanisms of spin Hall transport in III-V zinc-blende semiconductors, and on the effects of dissipation.Comment: 22 pages, minor adjustments, version as publishe

    MUBs inequivalence and affine planes

    Full text link
    There are fairly large families of unitarily inequivalent complete sets of N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes "old" results that do not appear to be well-known concerning known families of complete sets of MUBs and their associated planes.Comment: This is the version of this paper appearing in J. Mathematical Physics 53, 032204 (2012) except for format changes due to the journal's style policie
    corecore