523 research outputs found

    THE TAXONOMIC POSITION OF PAPUODENDRON C.T. WHITE AS ELUCIDATED BY ANATOMICAL CHARACTERS

    Get PDF
    When, in 1946, White described Papuodendron lepidotum from New Guinea, he apparently hesitated to incorporate this species in the Bombacaceae

    NEW THINKING IN PUNT MORPHOLOGY

    Get PDF
    This note is to reflect the thoughts, practical work and hopes of two workers in the Netherlands who are angaged in this branch of science, Dr. B.M.Moeliono of the Botanical laboratory at Groningen, and myself at the Rijskherbarium at laide

    MiniBacillus PG10 as a Convenient and Effective Production Host for Lantibiotics

    Get PDF
    Efficient bacterial cell factories are important for the screening and characterization of potent antimicrobial peptides such as lantibiotics. Although lantibiotic production systems have been established in Lactococcus lactis and Escherichia coli, the industrial workhorse Bacillus subtilis has been left relatively unexplored as a lantibiotic production host. Therefore, we tested different B. subtilis strains for their ability to produce lantibiotic peptides by using the subtilin modification and transport enzymes derived from the natural subtilin producer B. subtilis ATCC 6633. Our study shows that although B. subtilis ATCC 6633 and 168 are able to produce various processed lantibiotic peptides, an evident advantage of using either the 8-fold protease-deficient strain WB800 or the genome-minimized B. subtilis 168 strain PG10 is the lack of extracellular serine protease activity. Consequently, leader processing of lantibiotic precursor peptides is circumvented and thus potential toxicity toward the production host is prevented. Furthermore, PG10 provides a clean secondary metabolic background and therefore appears to be the most promising B. subtilis lantibiotic production host. We demonstrate the production of various lantibiotic precursor peptides by PG10 and show different options for their in vitro activation. Our study thus provides a convenient B. subtilis-based lantibiotic production system, which facilitates the search for novel antimicrobial peptides

    A case report of a blueberry muffin baby caused by congenital self-healing indeterminate cell histiocytosis

    Get PDF
    Background: Blueberry muffin is a descriptive term for a neonate with multiple purpuric skin lesions. Many causes are known, amongst them life-threatening diseases like congenital infections or leukemia. Indeterminate cell histiocytosis (ICH) is an exceptionally rare cause of blueberry muffin rash. ICH is a histiocytic disorder which can be limited to the skin or can present with systemic involvement. A mutation that has been described in histiocytic disorders is a MAP2K1 mutation. In ICH, this mutation has previously been described in merely one case. Case presentation: A term male neonate was admitted to the neonatology ward directly after birth because of a blueberry muffin rash. ICH was diagnosed on skin biopsy. The lesions resolved spontaneously. The patient is currently 3 years old and has had no cutaneous lesions or systemic involvement so far. This disease course is similar to that of the Hashimoto-Pritzker variant of LCH. Conclusions: ICH can manifest in neonates as resolving skin lesions. It is limited to the skin in most cases, but systemic development is possible. Therefore, it is essential to confirm the diagnosis with a biopsy before the lesions resolve and to monitor these patients closely with routine follow-up.</p

    Effective detection of human leukocyte antigen risk alleles in celiac disease using tag single nucleotide polymorphisms.

    Get PDF
    Background: The HLA genes, located in the MHC region on chromosome 6p21.3, play an important role in many autoimmune disorders, such as celiac disease (CD), type 1 diabetes (T1D), rheumatoid arthritis, multiple sclerosis, psoriasis and others. Known HLA variants that confer risk to CD, for example, include DQA1*05/DQB1*02 (DQ2.5) and DQA1*03/ DQB1*0302 (DQ8). To diagnose the majority of CD patients and to study disease susceptibility and progression, typing these strongly associated HLA risk factors is of utmost importance. However, current genotyping methods for HLA risk factors involve many reactions, and are complicated and expensive. We sought a simple experimental approach using tagging SNPs that predict the CD-associated HLA risk factors. Methodology: Our tagging approach exploits linkage disequilibrium between single nucleotide polymorphism (SNPs) and the CD-associated HLA risk factors DQ2.5 and DQ8 that indicate direct risk, and DQA1*0201/DQB1*0202 (DQ2.2) and DQA1*0505/DQB1*0301 (DQ7) that attribute to the risk of DQ2.5 to CD. To evaluate the predictive power of this approach, we performed an empirical comparison of the predicted DQ types, based on these six tag SNPs, with those executed with current validated laboratory typing methods of the HLA-DQA1 and -DQB1 genes in three large cohorts. The results were validated in three European celiac populations. Conclusion: Using this method, only six SNPs were needed to predict the risk types carried by .95% of CD patients. We determined that for this tagging approach the sensitivity was .0.991, specificity .0.996 and the predictive value .0.948. Our results show that this tag SNP method is very accurate an

    Functional Locomotor Consequences of Uneven Forefeet for Trot Symmetry in Individual Riding Horses

    Get PDF
    ABSTRACT: Left-right symmetrical distal limb conformation can be an important prerequisite for a successful performance, and it is often hypothesized that asymmetric or uneven feet are important enhancing factors for the development of lameness. On a population level, it has been demonstrated that uneven footed horses are retiring earlier from elite level competition, but the biomechanical consequences are not yet known. The objectives of this study were to compare the functional locomotor asymmetries of horses with uneven to those with even feet. Hoof kinetics and distal limb kinematics were collected from horses (n = 34) at trot. Dorsal hoof wall angle was used to classify horses as even or uneven (1.5° difference between forefeet respectively) and individual feet as flat (55°). Functional kinetic parameters were compared between even and uneven forefeet using MANOVA followed by ANOVA. The relative influences of differences in hoof angle between the forefeet and of absolute hoof angle on functional parameters were analysed using multiple regression analysis (P<0.05). In horses with uneven feet, the side with the flatter foot showed a significantly larger maximal horizontal braking and vertical ground reaction force, a larger vertical fetlock displacement and a suppler fetlock spring. The foot with a steeper hoof angle was linearly correlated with an earlier braking-propulsion transition. The conformational differences between both forefeet were more important for loading characteristics than the individual foot conformation of each individual horse. The differences in vertical force and braking force between uneven forefeet could imply either an asymmetrical loading pattern without a pathological component or a subclinical lameness as a result of a pathological development in the steeper foot

    Structural insights into RNA processing by the human RISC-loading complex.

    Get PDF
    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2

    Negative Staining and Image Classification – Powerful Tools in Modern Electron Microscopy

    Get PDF
    Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens

    Celiac disease: how complicated can it get?

    Get PDF
    In the small intestine of celiac disease patients, dietary wheat gluten and similar proteins in barley and rye trigger an inflammatory response. While strict adherence to a gluten-free diet induces full recovery in most patients, a small percentage of patients fail to recover. In a subset of these refractory celiac disease patients, an (aberrant) oligoclonal intraepithelial lymphocyte population develops into overt lymphoma. Celiac disease is strongly associated with HLA-DQ2 and/or HLA-DQ8, as both genotypes predispose for disease development. This association can be explained by the fact that gluten peptides can be presented in HLA-DQ2 and HLA-DQ8 molecules on antigen presenting cells. Gluten-specific CD4+ T cells in the lamina propria respond to these peptides, and this likely enhances cytotoxicity of intraepithelial lymphocytes against the intestinal epithelium. We propose a threshold model for the development of celiac disease, in which the efficiency of gluten presentation to CD4+ T cells determines the likelihood of developing celiac disease and its complications. Key factors that influence the efficiency of gluten presentation include: (1) the level of gluten intake, (2) the enzyme tissue transglutaminase 2 which modifies gluten into high affinity binding peptides for HLA-DQ2 and HLA-DQ8, (3) the HLA-DQ type, as HLA-DQ2 binds a wider range of gluten peptides than HLA-DQ8, (4) the gene dose of HLA-DQ2 and HLA-DQ8, and finally,(5) additional genetic polymorphisms that may influence T cell reactivity. This threshold model might also help to understand the development of refractory celiac disease and lymphoma
    • …
    corecore