588 research outputs found

    A FIRST AND NINTH AMENDMENT THEORY OF A RIGHT OF ACCESS TO CRIMINAL TRIALS

    Get PDF

    A FIRST AND NINTH AMENDMENT THEORY OF A RIGHT OF ACCESS TO CRIMINAL TRIALS

    Get PDF

    Association of Retinal Vascular Caliber and Age-Related Macular Degeneration in Patients With the Acquired Immunodeficiency Syndrome.

    Get PDF
    PurposeTo evaluate the relationship between retinal vascular caliber and AMD in patients with AIDS.MethodsParticipants enrolled in the Longitudinal Study of the Ocular Complications of AIDS had retinal photographs taken at enrollment. Retinal vascular caliber (central retinal artery equivalent [CRAE] and central retinal vein equivalent [CRVE]) and intermediate-stage AMD were determined from these retinal photographs. Photographs were evaluated by graders at a centralized reading center, using the Age-Related Eye Disease Study grading system for AMD and semiautomated techniques for evaluating retinal vascular caliber.ResultsOf the 1171 participants evaluated, 110 (9.4%) had AMD and 1061 (90.6%) did not. Compared with participants without AMD, participants with AMD had larger mean CRAEs (151 ± 16 μm versus 147 ± 16 μm; P = 0.009) and mean CRVEs (228 ± 24 μm versus 223 ± 25 μm; P = 0.02). The unadjusted differences were: CRAE, 4.3 μm (95% confidence interval [CI] 1.1-7.5; P = 0.009) and CRVE, 5.5 μm (95% CI 0.7-10.3; P = 0.02). After adjustment for age, race/ethnicity, sex, human immunodeficiency syndrome (HIV) transmission category, smoking, enrollment and nadir CD4+ T cells, and enrollment and maximum HIV load, the differences between patients with and without AMD were as follows: CRAE, 5.4 μm (95% CI 2.3-8.5; P = 0.001) and CRVE, 6.0 μm (95% CI 1.4-10.6; P = 0.01).ConclusionsIn patients with AIDS, AMD is associated with greater retinal arteriolar and venular calibers, suggesting a role for shared pathogenic mechanisms, such as persistent systemic inflammation

    Examining the Conceptual Design Process for Future Hybrid-Electric Rotorcraft

    Get PDF
    Hybrid-electric propulsion systems introduce immense complexity and numerous design challenges not previously encountered in aircraft design. Traditional conceptual-level rotorcraft design approaches may not adequately capture the level of propulsion system detail desired for hybrid-electric vehicle conceptual design. As part of a NASA Small Business Innovative Research (SBIR) Phase II contract, Empirical Systems Aerospace (ESAero) investigated the implementation of several hybrid-electric propulsion architectures onto three rotorcraft configurations. Unique hybrid-electric variants of these configurations were compared against their conventionally-powered counterparts using typical metrics such as payload, range, and energy efficiency. The feasibility and performance of these vehicles was also investigated in the +15 and +30-year timeframes based on third-party estimations for future component performance. Using the lessons learned during this trade study, ESAero then conducted a conceptual design effort for a hybrid-electric tiltrotor demonstrator based on the XV-15. A detailed integration of the hybrid-electric propulsion system into the vehicle airframe was also performed. The hybrid-electric XV-15 concept vehicle was estimated to achieve a 10% reduction in cruise fuel consumption compared to the original NASA XV-15 at the cost of increasing the vehicle empty weight by almost 25%. The success of this design effort suggests that the design of a manned, hybrid-electric tiltrotor is technically feasible at current technology levels

    Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter

    Get PDF
    Balloon-borne measurements of CFC11 (from the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 Arctic winter as part of the SOLVE-THESEO 2000 campaign, based in Kiruna (Sweden). Here we present the CFC11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC11 and O3 measured on the flights. The peak ozone loss (~1200ppbv) occurs in the 440-470K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Get PDF
    Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv) occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Quality Control Measures over 30 Years in a Multicenter Clinical Study: Results from the Diabetes Control and Complications Trial / Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study.

    Get PDF
    Implementation of multicenter and/or longitudinal studies requires an effective quality assurance program to identify trends, data inconsistencies and process variability of results over time. The Diabetes Control and Complications Trial (DCCT) and the follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) study represent over 30 years of data collection among a cohort of participants across 27 clinical centers. The quality assurance plan is overseen by the Data Coordinating Center and is implemented across the clinical centers and central reading units. Each central unit incorporates specific DCCT/EDIC quality monitoring activities into their routine quality assurance plan. The results are reviewed by a data quality assurance committee whose function is to identify variances in quality that may impact study results from the central units as well as within and across clinical centers, and to recommend implementation of corrective procedures when necessary. Over the 30-year period, changes to the methods, equipment, or clinical procedures have been required to keep procedures current and ensure continued collection of scientifically valid and clinically relevant results. Pilot testing to compare historic processes with contemporary alternatives is performed and comparability is validated prior to incorporation of new procedures into the study. Details of the quality assurance plan across and within the clinical and central reading units are described, and quality outcomes for core measures analyzed by the central reading units (e.g. biochemical samples, fundus photographs, ECGs) are presented
    corecore