623 research outputs found

    Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers

    Get PDF
    The effect of two different dopants, P and Ga, in spin-on glass (SOG) films on impurity-free vacancy disordering (IFVD) in GaAs/AlGaAs quantum-well structures has been investigated. It is observed that by varying the annealing and baking temperatures, P-doped SOG films created a similar amount of intermixing as the undoped SOG films. This is different from the results of other studies of P-doped SiOâ‚‚ and is ascribed to the low doping concentration of P, indicating that the doping concentration of P in the SiOâ‚‚ layer is one of the key parameters that may control intermixing. On the other hand, for all the samples encapsulated with Ga-doped SOG layers, significant suppression of the intermixing was observed, making them very promising candidates with which to achieve the selective-area defect engineering that is required for any successful application of IFVD.One of the authors (H.H.T.) acknowledges a fellowship awarded to him by the Australian Research Council

    Suppression of interdiffusion in GaAs/AlGaAs quantum-well structure capped with dielectric films by deposition of gallium oxide

    Get PDF
    In this work, different dielectric caps were deposited on the GaAs/AlGaAs quantum well(QW) structures followed by rapid thermal annealing to generate different degrees of interdiffusion. Deposition of a layer of GaxOy on top of these dielectric caps resulted in significant suppression of interdiffusion. In these samples, it was found that although the deposition of GaxOy and subsequent annealing caused additional injection of Ga into the SiOâ‚‚ layer, Ga atoms were still able to outdiffuse from the GaAsQW structure during annealing, to generate excess Ga vacancies. The suppression of interdiffusion with the presence of Ga vacancies was explained by the thermal stress effect which suppressed Ga vacancydiffusion during annealing. It suggests that GaxOy may therefore be used as a mask material in conjunction with other dielectric capping layers in order to control and selectively achieve impurity-free vacancy disordering.J. Wong-Leung, P. N. K. Deenapanray, and H. H. Tan acknowledge the fellowships awarded by the Australian Research Council

    ApoE Receptor 2 Regulates Synapse and Dendritic Spine Formation

    Get PDF
    Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory.In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density.These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95

    Evidence of blocking effect on carrier trapping process by necking region in very narrow AlGaAs/GaAs V-grooved quantum wire structure

    No full text
    Transient band-gaprenormalization (BGR) effects are investigated in AlGaAs/GaAs V-grooved quantum structures. The temperature-dependent transient BGR effects in the sidewall quantum well (SQWL) provide direct evidence of the existence of the blocking effect by the necking region barrier on the carrier trapping process. These effects provide a useful method to show the existence of the necking region, particularly for very thin SQWL structures. The temperature-dependent lifetimes of the SQWL and quantum wire (QWR) provide further proof of the carrier trapping process from the SQWL to the QWR.This work was supported in part by a grant from the Academic Frontier Promotion Project of Monbusho, Shanghai ‘‘QiMingXing’’ Fund No. 98QA14004, the State Key Program for Basic Research of China, and the AusAID through IDP Education Australia under Australia-China Institutional Links Program

    Microbial control of diatom bloom dynamics in the open ocean

    Get PDF
    Diatom blooms play a central role in supporting foodwebs and sequestering biogenic carbon to depth. Oceanic conditions set bloom initiation, whereas both environmental and ecological factors determine bloom magnitude and longevity. Our study reveals another fundamental determinant of bloom dynamics. A diatom spring bloom in offshore New Zealand waters was likely terminated by iron limitation, even though diatoms consumed <1/3 of the mixed-layer dissolved iron inventory. Thus, bloom duration and magnitude were primarily set by competition for dissolved iron between microbes and small phytoplankton versus diatoms. Significantly, such a microbial mode of control probably relies both upon out-competing diatoms for iron (i.e., K-strategy), and having high iron requirements (i.e., r-strategy). Such resource competition for iron has implications for carbon biogeochemistry, as, blooming diatoms fixed three-fold more carbon per unit iron than resident non-blooming microbes. Microbial sequestration of iron has major ramifications for determining the biogeochemical imprint of oceanic diatom blooms. Citation: Boyd, P. W., et al. (2012), Microbial control of diatom bloom dynamics in the open ocean, Geophys. Res. Lett., 39, L18601

    Automatic generation of hardware/software interfaces

    Get PDF
    Enabling new applications for mobile devices often requires the use of specialized hardware to reduce power consumption. Because of time-to-market pressure, current design methodologies for embedded applications require an early partitioning of the design, allowing the hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic for two reasons: (1) a detailed hardware-software interface is difficult to specify until one is deep into the design process, and (2) it prevents the later migration of functionality across the interface motivated by efficiency concerns or the addition of features. We address this problem using the Bluespec Codesign Language~(BCL) which permits the designer to specify the hardware-software partition in the source code, allowing the compiler to synthesize efficient software and hardware along with transactors for communication between the partitions. The movement of functionality across the hardware-software boundary is accomplished by simply specifying a new partitioning, and since the compiler automatically generates the desired interface specifications, it eliminates yet another error-prone design task. In this paper we present BCL, an extension of a commercially available hardware design language (Bluespec SystemVerilog), a new software compiling scheme, and preliminary results generated using our compiler for various hardware-software decompositions of an Ogg Vorbis audio decoder, and a ray-tracing application.National Science Foundation (U.S.) (NSF (#CCF-0541164))National Research Foundation of Korea (grant from the Korean Government (MEST) (#R33-10095)

    Preliminary Study of Prospective ECG-Gated 320-Detector CT Coronary Angiography in Patients with Ventricular Premature Beats

    Get PDF
    BACKGROUND: To study the applicability of prospective ECG-gated 320-detector CT coronary angiography (CTCA) in patients with ventricular premature beats (VPB), and determine the scanning mode that best maximizes image quality and reduces radiation dose. METHODS: 110 patients were divided into a VPB group (60 cases) and a control group (50 cases) using CTCA. All the patients then underwent coronary angiography (CAG) within one month. CAG served as a reference standard through which the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of CTCA in diagnosing significant coronary artery stenosis (luminal stenosis ≥50%) could be analyzed. The two radiologists with more than 3 years' experience in cardiac CT each finished the image analysis after consultation. A personalized scanning mode was adopted to compare image quality and radiation dose between the two groups. METHODOLOGY/PRINCIPAL FINDINGS: At the coronary artery segment level, sensitivity, specificity, PPV, and NPV in the premature beat group were 92.55%, 98.21%, 88.51%, and 98.72% respectively. In the control group these values were found to be 95.79%, 98.42%, 90.11%, and 99.28% respectively. Between the two groups, specificity, sensitivity PPV, NPV was no significant difference. The two groups had no significant difference in image quality score (P>0.05). Heart rate (77.20±12.07 bpm) and radiation dose (14.62±1.37 mSv) in the premature beat group were higher than heart rate (58.72±4.73 bpm) and radiation dose (3.08±2.35 mSv) in the control group. In theVPB group, the radiation dose (34.55±7.12 mSv) for S-field scanning was significantly higher than the radiation dose (15.10±1.12 mSv) for M-field scanning. CONCLUSIONS/SIGNIFICANCE: With prospective ECG-gated scanning for VPB, the diagnostic accuracy of coronary artery stenosis is very high. Scanning field adjustment can reduce radiation dose while maintaining good image quality. For patients with slow heart rates and good rhythm, there was no statistically significant difference in image quality

    A Cluster-Randomised Trial of Staff Education to Improve the Quality of Life of People with Dementia Living in Residential Care: The DIRECT Study

    Get PDF
    BACKGROUND: The Dementia In Residential care: EduCation intervention Trial (DIRECT) was conducted to determine if delivery of education designed to meet the perceived need of GPs and care staff improves the quality of life of participants with dementia living in residential care. METHODOLOGY/PRINCIPAL FINDINGS: This cluster-randomised controlled trial was conducted in 39 residential aged care facilities in the metropolitan area of Perth, Western Australia. 351 care facility residents aged 65 years and older with Mini-Mental State Examination ≤ 24, their GPs and facility staff participated. Flexible education designed to meet the perceived needs of learners was delivered to GPs and care facility staff in intervention groups. The primary outcome of the study was self-rated quality of life of participants with dementia, measured using the QOL-Alzheimer's Disease Scale (QOL-AD) at 4 weeks and 6 months after the conclusion of the intervention. Analysis accounted for the effect of clustering by using multi-level regression analysis. Education of GPs or care facility staff did not affect the primary outcome at either 4 weeks or 6 months. In a post hoc analysis excluding facilities in which fewer than 50% of staff attended an education session, self-rated QOL-AD scores were 6.14 points (adjusted 95%CI 1.14, 11.15) higher at four-week follow-up among residents in facilities randomly assigned to the education intervention. CONCLUSION: The education intervention directed at care facilities or GPs did not improve the quality of life ratings of participants with dementia as a group. This may be explained by the poor adherence to the intervention programme, as participants with dementia living in facilities where staff participated at least minimally seemed to benefit. TRIAL REGISTRATION: ANZCTR.org.au ACTRN12607000417482

    Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2–q29 in squamous cell carcinoma of the lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The underlying genetic alterations for squamous cell carcinoma (SCC) and adenocarcinoma (AC) carcinogenesis are largely unknown.</p> <p>Methods</p> <p>High-resolution array- CGH was performed to identify the differences in the patterns of genomic imbalances between SCC and AC of non-small cell lung cancer (NSCLC).</p> <p>Results</p> <p>On a genome-wide profile, SCCs showed higher frequency of gains than ACs (<it>p </it>= 0.067). More specifically, statistically significant differences were observed across the histologic subtypes for gains at 2q14.2, 3q26.2–q29, 12p13.2–p13.33, and 19p13.3, as well as losses at 3p26.2–p26.3, 16p13.11, and 17p11.2 in SCC, and gains at 7q22.1 and losses at 15q22.2–q25.2 occurred in AC (<it>P </it>< 0.05). The most striking difference between SCC and AC was gains at the 3q26.2–q29, occurring in 86% (19/22) of SCCs, but in only 21% (3/14) of ACs. Many significant genes at the 3q26.2–q29 regions previously linked to a specific histology, such as EVI1,<it>MDS1, PIK3CA </it>and <it>TP73L</it>, were observed in SCC (<it>P </it>< 0.05). In addition, we identified the following possible target genes (> 30% of patients) at 3q26.2–q29: <it>LOC389174 </it>(3q26.2),<it>KCNMB3 </it>(3q26.32),<it>EPHB3 </it>(3q27.1), <it>MASP1 </it>and <it>SST </it>(3q27.3), <it>LPP </it>and <it>FGF12 </it>(3q28), and <it>OPA1</it>,<it>KIAA022</it>,<it>LOC220729</it>, <it>LOC440996</it>,<it>LOC440997</it>, and <it>LOC440998 </it>(3q29), all of which were significantly targeted in SCC (<it>P </it>< 0.05). Among these same genes, high-level amplifications were detected for the gene, <it>EPHB3</it>, at 3q27.1, and <it>MASP1 </it>and <it>SST</it>, at 3q27.3 (18, 18, and 14%, respectively). Quantitative real time PCR demonstrated array CGH detected potential candidate genes that were over expressed in SCCs.</p> <p>Conclusion</p> <p>Using whole-genome array CGH, we have successfully identified significant differences and unique information of chromosomal signatures prevalent between the SCC and AC subtypes of NSCLC. The newly identified candidate target genes may prove to be highly attractive candidate molecular markers for the classification of NSCLC histologic subtypes, and could potentially contribute to the pathogenesis of the squamous cell carcinoma of the lung.</p

    The importance of Real-Life research in Respiratory Medicine: Manifesto of the Respiratory Effectiveness Group:Endorsed by the International Primary Care Respiratory Group and the World Allergy Organization

    Get PDF
    status: publishe
    • …
    corecore