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[1] Diatom blooms play a central role in supporting food-
webs and sequestering biogenic carbon to depth. Oceanic
conditions set bloom initiation, whereas both environmental
and ecological factors determine bloom magnitude and lon-
gevity. Our study reveals another fundamental determinant
of bloom dynamics. A diatom spring bloom in offshore
New Zealand waters was likely terminated by iron limitation,
even though diatoms consumed <1/3 of the mixed-layer dis-
solved iron inventory. Thus, bloom duration and magnitude
were primarily set by competition for dissolved iron between
microbes and small phytoplankton versus diatoms. Signifi-
cantly, such a microbial mode of control probably relies both
upon out-competing diatoms for iron (i.e., K-strategy), and
having high iron requirements (i.e., r-strategy). Such resource
competition for iron has implications for carbon biogeo-
chemistry, as, blooming diatoms fixed three-fold more car-
bon per unit iron than resident non-blooming microbes.
Microbial sequestration of iron has major ramifications for
determining the biogeochemical imprint of oceanic diatom
blooms. Citation: Boyd, P. W., et al. (2012), Microbial control
of diatom bloom dynamics in the open ocean, Geophys. Res. Lett.,
39, L18601, doi:10.1029/2012GL053448.

1. Introduction

[2] Diatoms are important bloom-forming phytoplank-
ton that contribute �40% of global ocean productivity
[Falkowski et al., 1998] and represent a major vector of

carbon sequestration via downward particle export [Blain
et al., 2007]. Diatom blooms have a duration of weeks and
their initiation is driven by incident irradiance, nutrient
availability and surface mixed-layer shallowing [Platt et al.,
2009; Yamada and Ishizaka, 2006]. Our understanding of
the controls on bloom magnitude and longevity centres on
the interplay of mixed-layer-depth, nutrient inventory and
grazing pressure [Cushing, 1990; Reynolds, 2006]. Recent
research on diatom bloom dynamics has modelled their reg-
ulation by focusing on environmental factors including
nutricline [Cermeno et al., 2008] or pycnocline [Behrenfeld,
2010] depth. However, biogeochemical models have largely
overlooked the role of trace metals in controlling bloom
dynamics, even though they are equally as influential as
macronutrients in controlling phytoplankton processes [Boyd
et al., 2007].
[3] In this study - FeCycle II, a GEOTRACES [www.

geotraces.org] process study, we conducted a quasi-
Lagrangian investigation of the influence exerted by iron
(Fe) biogeochemistry on a spring diatom bloom. We directly
measured temporal changes in the pre-existing dissolved Fe
inventory, made concurrent estimates of biological Fe uptake
and Net Primary Production (NPP), and followed the fate and
biological recycling of this biogenic Fe. Our findings provide
critical insights into how the contrasting Fe demands of dia-
tom bloom-formers and the non-blooming microbial com-
munity, in conjunction with the fate of this biogenic Fe,
control bloom dynamics and hence the magnitude of NPP.

2. Bloom Initial Conditions, Development
and Decline

[4] FeCycle II was centred in a counter-clockwise eddy
(39�20′S 178�40′W) in subtropical waters east of New Zealand
(Figure 1a), a region where an annually-recurring bloom is
evident from satellite observations [Murphy et al., 2001]. After
surveying this feature, a drogued drifter was deployed at the
eddy centre on 17 September 2008 (year day 261) (Figure 1b).
From day 262 until 272 the drifter tracked the eddy centre -
and provided the quasi-Lagrangian sampling platform needed
to interpret temporal biogeochemical observations [Boyd et al.,
2007] - but on day 273 it exited the centre (Figure 1b) due to
>15 m s�1 winds. Between days 262–272, FeCycle II captured
the bloom evolution and initial decline (Figures 1c and 1d),
and provides a 12 day comparison of the interplay between
resource competition, Fe biogeochemistry, bloom dynamics,
and productivity.
[5] The eddy centre (Figure 1b) was initially char-

acterised by a�60 m mixed-layer (Figure 1c and Table S1 in
the auxiliary material), a 63 m deep euphotic zone, and
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chlorophyll (Chl) of 0.41 � 0.02 mg L�1 across a �150 km2

area (Figure 1d).1 At this time nitrate, phosphate and silicate
were 4.1 � 0.2, 0.5 � 0.05 and 2.1 � 0.1 mmol L�1,
respectively. Dissolved Fe was 0.60� 0.07 nmol L�1, giving
an initial mixed-layer inventory of�38 mmol m�2 (Figure 2,
top) maintained in solution by high-affinity Fe-binding
ligands (1.4 � 0.1 nmol L�1). Mixed-layer particulate Fe
stocks were also high (>200 mmol m�2), and thus additional
dissolved Fe was very likely supplied by photochemical
breakdown of particulate Fe [Johnson et al., 1994; Borer
et al., 2005] (Figure S1). The probable source of this Fe
was from lateral advection of resuspended shelf-sediments
during eddy formation (S. Animation). This nearshore prov-
enance is supported by the ratio of upper ocean particulate
Fe to manganese during FeCycle II (data not shown) which

was comparable to that from NW Pacific sites where lateral
sediment-derived Fe was evident [Lam and Bishop, 2008].
[6] The bloom evolved as the mixed layer shallowed

(Figure 1c), peaking at 1.6 � 0.1 mg Chl L�1 (92.4% trans-
missivity) on day 269 before declining rapidly (Figures 1c
and S2). It is difficult to pinpoint the onset of the diatom
bloom as seed stocks, for example of Leptocylindrus sp.
(Figure S2) where present at low abundances early in
FeCycle II, and increased tenfold within six days as the
bloom evolved and consumed silicate, a trend evident in
many mesoscale iron-enriched diatom blooms [Boyd et al.,
2007]. There are also issues with the interpretation of tem-
poral trends in the dissolved Fe inventory (Figure 2, top) as it
was altered concurrently by changes in mixed-layer depth,
biological Fe uptake, and putative Fe supply via photo-
chemical degradation of particulate Fe. Nevertheless, by day
268, prior to the phytoplankton biomass peak and when
<50% of the mixed-layer nutrient inventories had been

Figure 1. (a) FeCycle II eddy east of New Zealand (black shading). Green lines represent the predicted NW-SE trajectory
of waters over the continental shelf (dashed lines) during eddy formation in early 2008 (see Animation S1 in the auxiliary
material). (b) Initial location of a drogued drifter in the eddy centre and it’s counterclockwise trajectory (blue line) overlaid
on the vessel’s underway acoustically-derived upper-ocean current flows (from 40.5S 178.3E eastwards to the eddy;
closely-spaced black arrows, 5–25 cm s�1). Both are superimposed on a regional altimetry simulation (widely-spaced
arrows, 5–25 cm s�1) for September 2008 (auxiliary material). Two distinct phases are evident, days 261–272 in the
eddy centre, then wind-driven expulsion. (c) Time-series of daily (pre-dawn) one metre vertically-resolved (top) density
(st) and (bottom) transmissivity (%) profiles �1 km from the drifter at the eddy centre. Initial variability in mixed-layer
depth was followed by mixed-layer shallowing then abrupt deepening after day 272. Decreasing transmissivity was due
to the accumulation of phytoplankton biomass that peaked on days 269/270. (d) Time-series of satellite ocean colour-
derived chlorophyll concentration in the waters surrounding the eddy centre (i.e., �150 km2), bars denote variability
around the mean of the central and 8 surrounding 4 km pixels.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL053448.
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consumed (i.e.,�2.4� 0.2 (nitrate), 0.27� 0.03 (phosphate)
and 1.2 � 0.1 (silicate) mmol L�1) >90% of the dissolved
Fe inventory had been taken up (Figure 2, top).
[7] Why did the diatom bloom decline after day 269?

(Figures 1c and S2). Herbivory can be ruled out as shipboard

prey-labelling experiments revealed that copepods con-
sumed <15% of daily NPP fixed by >20 mm phytoplankton
(Table S2). It is unlikely that silicate limitation triggered
bloom decline, as open-ocean diatom blooms can draw sili-
cate down to �0.3 mmol L�1 [Allen et al., 2005] and we did
not observe <1 mmol Si L�1 during our study. By day 268,
mixed-layer Fe was <0.1 nmol Fe L�1 (Table S1) a concen-
tration which limits NPP [Boyd and Abraham, 2001], and
which resulted in a small but significant decrease in photo-
synthetic competence (Fv/Fm) (Figure 2, top). Together, these
observations point to Fe limitation as the mostly likely cause
of the bloom decline.

3. Patterns in Biological Uptake of New
and Recycled Iron

[8] The bloom was comprised of large diatoms (>20 mm),
in particular Asterionellopsis glacialis (56 mm3) and Lepto-
cylindrus sp. (588 mm3) (Figure S2). It is highly unlikely that
the diatoms drove the bloom into Fe limitation, as they were
responsible for <1/3 of community Fe uptake (Figure 2,
middle and 2, bottom). In contrast, the <2 mm autotrophic
(mainly Synechococcus), and heterotrophic bacteria had the
highest Fe uptake rates (Figure 2, middle), and despite
exhibiting no sustained increase in abundance (Figures S2
and S3) or cell size (data not shown) cells <20 mm took up
�70% of the dissolved Fe inventory (Figure 2, middle).
Rates of community Fe uptake were greatest between days
262 and 266 when phytoplankton stocks were relatively low.
After day 266, the main phase of bloom development
(Figure 1c) Fe uptake rates decreased (Figure 2, middle),
probably due to both mixed-layer shallowing (Figure 1c) and
a shift from luxury iron uptake (defined as luxurious uptake
and storage of iron at high dissolved iron concentrations
[Buitenhuis and Geider, 2010; Marchetti et al., 2009] to
lower rates. Although non-biological processes also altered
the mixed-layer iron inventory, cumulative iron uptake was
sufficient to account for the removal of stocks of new Fe, and
thus cells probably became increasingly reliant upon recy-
cled Fe (Figure 2, bottom).
[9] Additional microbial controls on Fe availability

(such as chemical speciation) to blooming diatoms emerge
when the fate of biogenic Fe is examined. Pico- and nano-
planktonic Fe was rapidly turned over within a pelagic
recycling loop via high rates of viral lysis, microzooplankton
bacterivory and herbivory (Figure 3, left). In contrast, diatom
Fe was recycled primarily by mesozooplankton, and diatoms
were conspicuous within faecal pellets (Figure S4). Rates
of Fe recycling were comparable to those for Fe uptake
(Figure 2, middle; cf. Figure 3, left). Despite sustained
daily recycling of significant amounts of Fe, relative to the
diatoms’ initial Fe uptake rates, the bloom declined rapidly
after day 269.
[10] Biogenic Fe recycled in the mixed-layer is potentially

available to all biota [Boyd et al., 2007; Strzepek et al.,
2005]. However, after day 266 when Fe was primarily sup-
plied to the biota by recycling (Figure 2, bottom), �70% of
Fe uptake was by pico- and nano-plankton (Figure 2, middle).
Thus, despite diatoms requiring little Fe to bloom (Figure 2,
bottom) [Strzepek et al., 2011; this study], they could not
access enough recycled Fe to exploit the available macro-
nutrients (i.e., �2.2 � 0.2 (N), 0.25 � 0.02 (P) and 1.1 �
0.1 (Si) mmol L�1 after day 268) and continue blooming.

Figure 2. (top) Column-integrated mixed-layer dissolved
Fe (see Table S1 for mixed layer depth), and photosynthetic
competence (Fv/Fm, dimensionless) of the phytoplankton
community sampled for incubations presented in Figure 2
(middle). (middle) Size-partitioned biological Fe uptake.
(bottom) The initial dissolved Fe inventory (on day 262 from
Figure 2 (top), adjusted for a 24 h lag) minus daily commu-
nity Fe uptake (black line and symbols), and of diatoms
alone (red line and symbols) (data from Figure 2, middle).
The horizontal dashed line denotes that stocks would be fully
depleted by day 287 if the community used only new Fe.
Inventories and fluxes were integrated to the base of the
surface-mixed-layer using daily estimates from Table S1.
Note, time-series data in Figure 2 (middle) cannot be directly
compared with most other datasets in Figures 1–4, as the 24 h
incubations introduce a 1 day lag. See main text for caveats
about the influence of mixed-layer shoaling and photochem-
ical degradation of particulate iron on dissolved iron
inventories.
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Their inability to utilize this Fe may be due to the superior
ability of the smaller cells to rapidly acquire Fe due to
physico-chemical advantages – e.g., higher surface-area:
volume ratio, faster diffusion rates [Beardall et al., 2009;
Irwin et al., 2006] and active transport systems [Butler,
1998] - and/or the limited bioavailability of forms of Fe
released during recycling (Strzepek et al. [2005] but cf. Sato
et al. [2007]). Although diatom culture studies favour the
former ‘kinetics’ scenario [Strzepek et al., 2011], we measured
enhanced production/release of high-affinity Fe-binding
ligands during a grazing experiment (Figure 3), which may
alter Fe bioavailability to diatoms.

4. Discussion

[11] There are major ecological ramifications resulting
from microbes and small phytoplankton dominating the
competition for this limited resource throughout rapidly
changing Fe biogeochemical conditions (Figures 2, bottom
and 3, left). Firstly, these small cells consumed �70% of the
new Fe inventory, and such microbial sequestration of new
Fe exerts a major influence on the Fe-requiring diatoms.
Secondly, microbes dominate Fe uptake in the latter stages
of FeCycle II suggesting that they also outcompete diatoms
for recycled Fe. Thus, uptake of new Fe by microbes and its
subsequent entrainment in a recycled Fe loop may place
limits on diatoms accessing Fe and hence on bloom magni-
tude and longevity.
[12] Resource competition theory in aquatic environments

has defined two strategies: r (i.e., opportunists that effi-
ciently exploit new sources of resources) versus K (i.e.,
a high nutrient affinity and low resource requirements)
[Arrigo, 2005; Edwards et al., 2011]. Applying such con-
ventions to the FeCycle II assemblage, the blooming dia-
toms would be viewed as r and the non-blooming microbes
as K strategists. Yet, in terms of the competition for Fe,
microbes appeared to have both a high affinity (K strategy)
and high resource acquisition capabilities (r strategy),

as they consumed most of the Fe inventory, without any
significant increase in their stocks. Unlike other nutrients
such as nitrate or phosphate [Arrigo, 2005], pico- and nano-
plankton appear to be equally adept at accessing either new
(Figure 2, top) or regenerated Fe (Figure 3, left). Studies to
date have considered whether there are specific microbial
physiological functional traits for nutrient acquisition
[Edwards et al., 2011] but have not investigated this issue
for trace metals. Evidence of both K and r strategies by
microbes during FeCycle II may point to microbial con-
sumption of this scarce resource, when sufficiently available,
at higher than required rates (so-called luxury uptake)
[Buitenhuis and Geider, 2010].
[13] How does microbial control of diatom bloom

dynamics alter its biogeochemical imprint? Firstly, as dia-
toms fix significantly more C per unit Fe than microbes and
small phytoplankton (Figure 4), much less of the pre-bloom
Fe inventory (�30%, Figure 4, bottom) can be leveraged to
draw down dissolved inorganic carbon or nitrate. Both have
implications for bloom productivity, and potentially for the
magnitude of downward carbon sequestration. Secondly,
although most of the pre-bloom Fe inventory is retained in
surface waters via rapid microbial recycling, much of this
inventory may be unavailable to diatoms due to it being
bound to strong ligands, and/or due to diatoms’ low affinity
for recycled Fe relative to smaller cells. Such unavailability
contradicts the findings of recent modelling experiments on
mesoscale Fe-enrichment and diatom blooms. The models
indicate a high sensitivity of projected Fe-mediated carbon
sequestration to the magnitude of pelagic Fe recycling
[Gnanadesikan et al., 2003; Sarmiento et al., 2010].
[14] The inability of diatoms to out-compete smaller cells

for new Fe, and/or access sufficient recycled Fe, means that
they probably require higher ambient dissolved Fe con-
centrations in order to bloom – i.e., a resource threshold may
exist - despite diatoms employing a competitive strategy of
relatively low intracellular Fe demand. Thus, the magnitude
of the spring bloom, in the study area and other regions such

Figure 3. (left) Biological Fe recycling by four distinct mechanisms. (right) Time-series of high-affinity Fe-binding ligand
concentrations during one of the Fe radiotracer experiments to measure microzooplankton bacterivory and herbivory of nano-
phytoplankton. (i.e., day 266 presented in Figure 3 left), expressed as excess of ligand concentration relative to dissolved Fe.
The radiotracer Fe was added at time-zero. For methods see auxiliary material. Note, early in FeCycle II the magnitude of the
decrease in the new Fe inventory and the estimated Fe resupplied from recycling exceeds the measured Fe uptake by �two-
fold.
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as the Southern Ocean where diatoms dominate blooms,
may be determined annually by the winter dissolved Fe
inventory and how much it exceeds this putative resource
threshold (Figure S5). Such a resource threshold is probably
fixed, as microbial and small phytoplankton stocks are under
tight grazer control [Price et al., 1994; Strzepek et al., 2005],
and once maximum Fe uptake rates are attained, more Fe
can only be consumed if they can increase their stocks
significantly.
[15] To date, most ocean biogeochemistry and climate

models have relied solely upon phytoplankton Fe:C ratios

from lab-cultures [Sunda and Huntsman, 1995] to set the
relationship between Fe and C biogeochemistry and climate.
FeCycle II reveals that diatom Fe requirements alone will
not determine the bounds on bloom productivity, since the
relative Fe requirements and Fe affinity of microbes and
small phytoplankton within the co-occurring assemblage
must also be considered. The constraints imposed on diatom
bloom dynamics due to a microbial stranglehold on Fe bio-
geochemistry must be incorporated into models which
examine the relationship between Fe supply, blooms and
C sequestration [Gnanadesikan et al., 2003; Sarmiento et al.,
2010; Tagliabue and Arrigo, 2006] before we can accurately
predict the effects of past, present and future changes in
Fe supply on the ocean C cycle.
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